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Abstract

This paper proposes a formal multi-agent architecture for implementing enterprise AI in regulated insurance firms,
integrating economic theory with institutional design. The framework synthesises three core theoretical perspectives:
Arrow’s risk pooling theory to formalise risk transformation under uncertainty, Nash equilibrium to model strategic
interactions between decision agents, and Principal-Agent theory to address incentive alignment under information
asymmetry. The insurer is modelled as a constrained optimisation entity operating under solvency, legal, ESG, and
operational boundaries, with specific focus on the regulatory contexts of Austria and Germany. The architecture
decomposes the firm into multiple specialised agents, each representing functional domains such as capital man-
agement, underwriting, claims processing, compliance, fraud detection, and client interaction. Human-in-the-loop
agents are integrated through a tiered access control system, ensuring differentiated data visibility and decision
influence based on user roles. An orchestrator agent supervises inter-agent coordination, enforcing regulatory admis-
sibility and institutional coherence under frameworks such as Solvency II, the AI Act, and the Insurance Distribution
Directive. Protocol integration is based on asynchronous execution and dual-layer communication infrastructures,
specifically the Model Context Protocol (MCP) and Agent-to-Agent (A2A) messaging. This structure enables the
systematic design of compliant, auditable multi-agent systems aligned with the institutional logic of financial firms
in Austria and Germany.

Keywords:Multi-Agent Systems, Enterprise AI, Insurance Regulation, Principal-Agent Theory, Institutional
Design

1 Introduction

In this paper, we develop a theoretical framework to formalise the core institutional functions of insurance
companies operating in Austria and Germany. Our objective is to represent these firms as systems of con-
strained optimisation problems, suitable for implementation via a decentralised multi-agent architecture.
We deliberately avoid task-level AI applications and instead focus on the structural transformation of insur-
ance firms into formal agent-based systems governed by economic objectives and regulatory constraints.
The analysis is restricted to profit-oriented private insurers, enabling the derivation of objective functions
consistent with utility or surplus maximisation under bounded rationality. This work contributes to a foun-
dation for applying advanced AI systems to insurance by grounding agent behaviour in firm theory rather
than heuristic rule sets or isolated prediction models.

1.1 Institutional Scope: Insurance Markets in Austria and Germany

Austria and Germany constitute two of the most developed and stringently regulated insurance markets
in Europe. Both jurisdictions operate under the Solvency II framework, characterised by high market pen-
etration, standardised supervisory practices, and formally codified capital adequacy regimes. The German
market includes a significant share of mutuals and public-law insurers, whereas Austria exhibits stronger
concentration among private joint-stock firms. Regulatory supervision is exercised by BaFin in Germany and
the FMA in Austria, under harmonised EU directives. These institutional similarities—amplified by coercive
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and normative isomorphic pressures within the EU regulatory field—permit a joint theoretical treatment
of profit-driven insurer behaviour [12]. Capital requirements and solvency constraints are explicitly quanti-
fied under Solvency II, making it possible to model insurance firms as surplus-maximising entities operating
under regulatory risk boundaries [8].

1.2 Taxonomy of Insurance Firms

Insurance firms in Austria and Germany can be categorised according to ownership structure, legal form,
and regulatory mandate. Broadly, three types dominate the institutional landscape: (i) public-law insurers,
such as statutory health insurance providers; (ii) mutual insurers, owned by their policyholders; and (iii)
joint-stock companies, operating under shareholder control. While all entities are subject to Solvency II
and supervised by national authorities, their internal objectives differ substantially. Public-law insurers are
typically constrained by statutory duties and fixed benefit structures, with limited discretion over pricing or
capital strategy. Mutuals operate under collective ownership, often prioritising member benefits over profit
maximisation. In contrast, joint-stock insurers pursue surplus generation under market competition, subject
to regulatory capital and risk constraints [27, 6]. These differences affect the formalisation of objective
functions and admissible decision sets. Given this divergence, the subsequent analysis focuses exclusively on
profit-driven private insurers, for which the firm can be modelled as a utility-maximising entity operating
under solvency and compliance constraints.

1.3 Related Work

The theoretical foundation for modelling insurer behaviour rests on three principal frameworks. First,
Arrow’s treatment of risk-bearing institutions provides a canonical basis for interpreting insurance as a
mechanism for intertemporal risk transfer and welfare improvement under uncertainty [2]. Second, the
principal-agent framework is widely used to model asymmetries between insurers and policyholders, partic-
ularly in underwriting and claims settlement, where hidden information and hidden actions affect contract
outcomes [26, 32]. Third, the Nash equilibrium concept enables formal analysis of insurer interaction in
competitive environments, such as premium setting, reinsurance strategy, or capital allocation, where strate-
gic interdependence governs outcomes [11]. These foundations allow insurer behaviour to be framed as a
set of constrained optimisation problems under uncertainty and regulation. This abstraction is essential for
translating institutional logic into formal structures usable in multi-agent systems.

Beyond economic formalism, the internal structure and governance of insurance firms have been analysed
through organisational theory. Principal-agent models extend to internal hierarchies, capturing incentive
misalignments between shareholders, executives, and operational units [10]. Institutional isomorphism has
been observed in the convergence of firm structures across markets with similar regulatory constraints,
reinforcing the adoption of standardised roles and procedures [12]. This theoretical lens provides a basis
for decomposing insurer operations into semi-autonomous subfunctions governed by compliance and incen-
tive compatibility. Such decomposition aligns naturally with agent-based modelling approaches, in which
decentralised decision entities operate under bounded rationality within a shared institutional environment.

Applications of AI in the insurance industry have focused primarily on operational subdomains such as
fraud detection, customer profiling, and claims triage. Supervised learning techniques dominate, often relying
on structured policyholder data or claim records [9]. More recently, natural language processing has been
applied to extract and classify information from unstructured documents in claims workflows [19]. Industry-
driven approaches increasingly promote intelligent automation platforms that combine machine learning
with robotic process automation for end-to-end claims handling [4]. Such implementations remain task-
specific and do not extend to the systemic modelling of insurer behaviour. Existing AI solutions typically
optimise local performance metrics without incorporating institutional objectives or regulatory constraints,
limiting their suitability for architecture-level integration.

1.4 Contribution

This paper contributes a theoretical framework that formalises the core institutional functions of profit-
driven insurance firms as constrained optimisation problems grounded in economic theory. Building on
established models of utility, risk, and contract theory, we decompose insurer operations into analytically
distinct subfunctions aligned with firm-level objectives. These subfunctions are then mapped onto a multi-
agent system architecture, in which autonomous agents operate under bounded rationality, institutional
constraints, and shared utility goals. Unlike task-oriented AI applications, the proposed structure enables
systemic modelling of insurance firms as distributed decision systems, opening a path toward compliant,
architecture-level AI implementation in regulated environments.
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2 Formal Modelling of Insurance Firm Functions

The formal behaviour of an insurance company can be represented as an optimisation problem in which
the firm seeks to maximise surplus or expected utility, subject to a set of internal and external constraints.
The objective reflects the insurer’s economic role as an intermediary that transforms individual risks into
collective stability through pooling and capital management. Constraints arise from capital requirements,
risk boundaries, and regulatory compliance obligations, which delimit the admissible decision space. In
regulated environments such as Austria and Germany, these constraints include solvency directives such
as Solvency II, which formalise market-consistent valuation, capital adequacy, and risk-based supervision
[28, 25], consumer protection rules under the Insurance Distribution Directive (IDD), which aim to enhance
transparency, improve advisory standards, and strengthen product governance in insurance distribution [14,
30], and increasingly also algorithmic accountability derived from the AI Act, the GDPR, and ESG-related
regulatory frameworks [13, 15]. This abstraction reduces the insurance firm to a constrained optimisation
entity, forming the analytical basis for decomposing its internal functions into subcomponents represented by
decision agents. As a baseline, the firm’s behaviour can be formalised as the following maximisation problem:

max
a∈A

E[U(π(a))] (1)

s.t. E[L(a)] ≤ C (Capital adequacy constraint) (2)

VaRα(π(a)) ≤ R (Risk exposure limit under Solvency II) (3)

a ∈ Dlegal (Regulatory admissibility: AI Act, GDPR, IDD) (4)

a ∈ EESG,E (Environmental screening under EU Taxonomy and SFDR) (5)

a ∈ GESG,S&G (Social and governance constraints) (6)

a ∈ Ooperational (Operational feasibility) (7)

In this formulation, a ∈ A denotes the vector of firm-level decisions, including pricing, underwriting,
claims handling, investment allocation, and governance policies. The function π(a) represents the surplus or
profit generated by these decisions, while U(·) is the firm’s utility function, potentially reflecting risk-neutral
or risk-averse preferences. The capital adequacy constraint E[L(a)] ≤ C ensures that expected liabilities do
not exceed available capital C. Risk exposure is formalised via a Value-at-Risk condition at confidence level
α, such that VaRα(π(a)) ≤ R, where R is the firm’s Solvency II risk threshold. The admissible decision space
is further bounded by legal and institutional requirements. The legal constraint a ∈ Dlegal enforces compli-
ance with supervisory regimes such as the AI Act [13], the General Data Protection Regulation (GDPR), and
the Insurance Distribution Directive (IDD) [14]. ESG admissibility is introduced via two distinct constraint
sets: a ∈ EESG,E denotes environmental eligibility under instruments such as the EU Taxonomy Regulation
(EU) 2020/852 [24] and the Sustainable Finance Disclosure Regulation (SFDR) [23], including measurable
thresholds like carbon intensity per revenue unit or share of taxonomy-aligned investments. a ∈ GESG,S&G

ensures that actions meet minimum social and governance criteria, including metrics such as board diver-
sity ratios, executive pay dispersion, transparency of grievance mechanisms, and policyholder participation
in governance. a ∈ Ooperational guarantees that all selected actions remain within the firm’s technical and
procedural capabilities. This formulation expresses the insurer’s decision logic as a constrained optimisa-
tion problem: maximising expected utility while navigating capital limits, solvency thresholds, regulatory
boundaries, and ESG accountability. It reflects the institutional reality that insurance firms are not profit-
maximising entities in a vacuum, but regulated intermediaries embedded within a system of legal, financial,
and sustainability norms. The constraint structure provides a formal foundation for balancing these com-
peting obligations within an integrated decision architecture. The constrained optimisation problem can be
reformulated using a Lagrangian representation, which incorporates the firm’s decision space and associated
constraints into a single augmented objective:

L(a,λ) = E[U(π(a))]− λ1 (E[L(a)]− C)− λ2 (VaRα(π(a))−R)−
6∑

i=3

λi · I(i)viol(a) (8)

In this formulation, λ = (λ1, λ2, . . . , λ6) denotes the vector of non-negative Lagrange multipliers associ-

ated with the respective constraints. The indicator functions I(i)viol(a) take the value 1 when the corresponding
constraint is violated, and 0 otherwise. This representation allows each binding constraint to be interpreted
as an implicit cost component: a marginal penalty or trade-off that reduces the firm’s attainable utility. The
multipliers quantify the shadow price of each constraint — i.e. how much expected utility would improve if
that constraint were marginally relaxed.
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Put differently, this expression formalises the reality that insurers are not just maximising profit; they
are doing so under legal, financial, and institutional boundaries, each of which carries a hidden opportunity
cost. The formulation makes those trade-offs explicit and measurable.

This prepares the ground for decomposing the global optimisation problem into analytically tractable
subcomponents, each corresponding to a distinct functional domain within the firm. These subcomponents
will later be mapped to autonomous decision agents, coordinated within a multi-agent system aligned with
the firm’s overall objective.

The formal constraint structure outlined above provides a general decision-theoretic foundation. To refine
it, we now examine how different theoretical frameworks contribute distinct modelling perspectives to insurer
behaviour. We begin with Arrow’s treatment of risk-bearing institutions. Arrow’s analytical framework
interprets insurance as a mechanism for transferring individual uncertainty into collective stability through
risk pooling under conditions of incomplete information and risk aversion [2]. Within this view, the firm
functions as a utility-transforming intermediary, accepting idiosyncratic risks from clients and aggregating
them into diversified portfolios whose outcomes are more predictable at the collective level. Risk-averse agents
maximise the expected utility of their final wealth, implying that the insurance contract must improve the
expected utility of the insured while maintaining the insurer’s solvency. The firm’s objective thus incorporates
a concave utility function, and optimal contract design becomes a question of balancing marginal utility
across risk classes subject to regulatory and capital constraints. This foundation legitimises the use of
expected utility in the global model and provides a formal link between micro-level risk aversion and firm-level
surplus transformation.

Following the expected utility framework established by Arrow [2], if W denotes the insurer’s terminal
wealth and X the aggregate uncertain claim distribution, the firm solves:

max E[U(W −X)] (9)

where U(·) is a strictly concave utility function reflecting risk aversion, and X represents the net realised
liabilities from pooled insured risks. This structure underpins the expected utility formulation applied in
the global optimisation model.

A second theoretical perspective relevant to insurer modelling derives from principal–agent theory, which
formalises the implications of asymmetric information between contracting parties. In insurance, such asym-
metries are structural: the policyholder holds private information about risk type (adverse selection) and
actions taken post-contract (moral hazard) [26]. This leads to inefficiencies in underwriting, pricing, and
claims settlement, where the insurer must design mechanisms to extract truthful signals or induce appro-
priate behaviour. Within the firm itself, principal–agent problems arise in governance structures, where
shareholders (principals) must align the actions of executives and operational units (agents) under limited
observability and incentive misalignment [10]. In the modelling context, principal–agent theory justifies the
use of informational constraints in the firm’s decision space. These constraints restrict the feasible set of
actions not only by regulation and capital, but by the need to maintain incentive compatibility. The global
optimisation problem is thus shaped by contracts and internal mechanisms that ensure delegated deci-
sions align with firm objectives despite decentralised knowledge and interests. Following the principal-agent
framework formalised by Rothschild and Stiglitz [26], an incentive-compatible mechanism can be expressed
as:

a∗ ∈ argmax
a∈A

E[u(a, s(a)) | θ] (10)

where a∗ is the equilibrium action, u(·) is the agent’s utility, and θ is the agent’s private type. This
structure embeds information asymmetry into the admissible decision structure of the firm. Similarly, Nash
equilibrium provides the formal language to describe strategic interactions among insurers in competitive
markets, as outlined by Dickson and Drekic [11]. Each firm chooses a strategy that maximises its objective
given the strategies of others.

This strategic context introduces equilibrium constraints into the firm’s optimisation problem, particu-
larly in areas where regulatory frameworks permit competition under capital requirements and fair disclosure.
Premium rates, for example, are not solely determined by loss expectations, but also by competitive pres-
sures and reactions. Similarly, capital allocation and reinsurance retention levels are shaped by the structure
of rival firms’ positions. In this setting, the insurer’s feasible set is partially endogenous: constrained not
only by internal and external norms, but by strategic stability.
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Following the Nash equilibrium framework as applied to insurance markets by Dickson and Drekic [11],
the equilibrium condition can be formalised as:

a∗
i ∈ arg max

ai∈Ai

E[Ui(πi(ai,a−i))] (11)

where each firm maximises its own expected utility conditional on the strategies of its competitors. This
condition defines a Nash equilibrium in which no insurer has an incentive to deviate unilaterally from its
chosen action.

The three modelling perspectives outlined above—Arrow’s utility-based risk pooling [2], principal–agent
theory under asymmetric information [26], and Nash equilibrium in strategic competition [11]—each con-
tribute distinct structural constraints and behavioural mechanisms to the insurer’s decision space. Together,
they represent a layered interpretation of insurance firm behaviour: risk transformation, incentive design,
and interdependent strategy selection.

To capture this multidimensional structure, we now introduce a unified formulation in which the firm is
modelled as a distributed decision system composed of interdependent subfunctions. This approach allows
each theoretical lens to be encoded as a constraint or objective component in a global architecture that
reflects the institutional and economic realities of regulated insurance markets. It also provides a formal
foundation for decomposing the firm into agent-level components in later sections. We define the unified
model as follows:

max
a1,...,an

n∑
i=1

E[Ui(πi(ai,a−i))] (12)

s.t. E[Li(ai)] ≤ Ci ∀i (Capital adequacy) (13)

ICi(ai, θi) holds ∀i (Incentive compatibility) (14)

ai ∈ Bi(a−i) ∀i (Best response: strategic consistency) (15)

ai ∈ Di ∩ Ei ∩ Gi ∩ Oi ∀i (Legal, ESG, operational admissibility) (16)

Here, the firm is composed of n subfunctions or decision units, each denoted by index i. Each ai rep-
resents a vector of decisions associated with a particular function (e.g. pricing, underwriting, claims). The
function πi(ai,a−i) denotes the financial contribution of function i, which may depend on its own decisions
as well as those of other units (interdependencies). Ui(·) is the local utility function, potentially reflect-
ing risk preferences or performance targets. Constraint (13) ensures local capital adequacy; (14) imposes
incentive compatibility under private information; (15) enforces strategic consistency in the presence of
inter-agent competition or coordination; and (16) collects external admissibility constraints from regulatory,
environmental, governance, and operational domains.

This structure treats an insurance company as a system made up of smaller expert units. Each unit has
its own job and goals, but they all work together within a shared set of rules and limits. Some rules come
from regulators (like Solvency II or the AI Act), others from the market or the firm’s own governance. The
model shows how each part makes decisions, while still aligning with the company’s overall direction. This
formalisation sets the stage for implementing a multi-agent system that reflects how real insurers actually
function under legal, financial, and strategic constraints.

3 Functional Decomposition and Agent Architecture

Given the regulatory, confidentiality, and institutional constraints of the insurance sector, we argue that
enterprise AI systems must be implemented as proprietary infrastructures rather than built on open, general-
purpose platforms. This requirement arises from the intersection of data protection obligations (GDPR),
auditability under regulatory supervision (IDD, AI Act), and the need for institution-specific objective
functions. Within this context, we propose a decentralised multi-agent architecture as the appropriate system
design, in which autonomous decision agents operate under a global regulatory and strategic logic enforced
by an overseeing orchestrator agent.

The complexity of modern insurance firms necessitates a modular architecture, where distinct functions
operate as autonomous, goal-directed subunits. This decomposition enhances both analytical tractability
and system design, particularly when formalising insurer behaviour as a multi-agent system. Each agent is
assigned a specific functional role, operating under local decision rules bounded by firm-level constraints.
While agents such as underwriting, capital management, and claims settlement act semi-independently, they
are coordinated through a global optimisation logic that enforces regulatory admissibility, risk exposure
boundaries, and capital adequacy. Human-in-the-loop agents are integrated through a tiered access system,
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structuring data visibility and decision authority based on user roles, ensuring both regulatory compliance
and operational alignment.

In addition to technical operations, the firm must satisfy ESG-related obligations, particularly in the
social and governance (S&G) domains. This includes traceable decision accountability, inclusive stakeholder
access, and transparent reporting structures. To this end, some agents may not optimise financial flows
directly, but rather enforce compliance, track governance metrics, or interface with external actors. Large
language models (LLMs) provide a natural interface layer for employee- and client-facing communication,
enabling agents to interact with users in transparent, interpretable terms. These LLM-enabled agents can
also serve stakeholders such as shareholders or regulators by offering on-demand conversational access to
policy logic, performance summaries, and risk assessments. In this setting, natural language becomes both
a user interface and a compliance instrument, supporting the broader governance objectives of the firm.

As a profit-oriented institution, the insurance firm seeks to maximise financial surplus subject to internal
and regulatory constraints.

Capital Management Agent

The capital management agent is responsible for maintaining solvency while supporting business growth. Its
function is to allocate capital across risk-bearing units, ensure compliance with solvency requirements (e.g.
Solvency II), and buffer against adverse shocks. The agent does not generate profit directly but enables all
other agents to operate within admissible financial boundaries. Its decision problem balances reserve levels,
liquidity availability, and capital costs. Formally, the capital agent solves:

max
k∈K

− γ · Cost(k) (17)

s.t. P(X > k) ≤ 1− α (Solvency constraint) (18)

k ≥ Reservemin (Regulatory reserve floor) (19)

k ≤ AvailableCapital (Capital availability) (20)

Here, k denotes the capital buffer allocated by the agent, and Cost(k) is a convex function representing
the opportunity cost or regulatory friction of holding capital. γ is a weighting coefficient that captures the
trade-off between safety and efficiency. X is the random variable denoting aggregate liability. The solvency
constraint (18) ensures that the probability of insolvency remains below a predefined risk threshold α (e.g.
99.5% for Solvency II). Constraint (19) imposes a reserve floor, and (20) limits decisions to available financial
resources.

In plain terms, this agent decides how much capital the insurer should hold in reserve so that it can stay
solvent during bad years, while also not tying up too much money that could otherwise be used for business. It
plays a safety role in the system, making sure the company doesn’t fall below legal or supervisory thresholds,
while maintaining sufficient financial flexibility to support underwriting and operational activities.

Underwriting Agent

The underwriting agent is tasked with selecting, pricing, and classifying risks submitted to the insurer. Its
goal is to accept profitable risks, reject adverse ones, and allocate fair premiums in line with expected losses
and capital requirements. This agent faces information asymmetries due to incomplete or biased disclosures
by applicants, and must therefore rely on observable indicators or probabilistic models. It interacts closely
with the pricing function, fraud detection, and capital allocation. Formally, the underwriting agent solves:

max
u∈U

m∑
j=1

(pj − E[lj | xj ]) · δj (21)

s.t. δj ∈ {0, 1} ∀j (Acceptance decision) (22)

E[lj | xj ] ≤ τ (Expected loss threshold) (23)
m∑
j=1

δj ·VaRα(lj) ≤ k (Capital exposure constraint) (24)

In this formulation, j indexes the incoming applications, pj is the proposed premium, lj is the stochastic
loss for applicant j, and xj is the observable feature vector. δj is a binary variable that indicates whether
the policy is accepted. The agent maximises expected underwriting profit across accepted applications while
ensuring that no individual risk exceeds an expected loss threshold τ and that aggregate accepted risks do
not violate the firm’s capital limit k under VaR-based solvency requirements.
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Put simply, this agent decides which applications to accept and at what premium. It tries to find a
balance: avoiding customers likely to generate large losses, pricing correctly for those accepted, and keeping
the portfolio within the firm’s risk capacity. It acts as the firm’s first line of financial defence.

Claims Handling Agent

The claims handling agent is responsible for assessing, verifying, and settling claims made by policyholders.
Its role is to ensure fair and timely payment of legitimate claims while preventing overcompensation, delay-
induced escalation, or exposure to fraudulent activity. It operates under uncertainty due to incomplete
documentation and the stochastic nature of claim sizes and timing. It coordinates with the fraud detection
agent, legal interface, and capital management unit. Formally, the claims agent solves:

min
c∈C

n∑
i=1

E[Pi(θi)] + λ ·Delayi(θi) (25)

s.t. Pi(θi) ≥ Ci ∀i (Minimum contractual payout) (26)

Pi(θi) ≤ Ci ∀i (Policy coverage limit) (27)

FraudScorei(θi) ≤ ϕ ∀i (Fraud detection screen) (28)

Here, Pi(θi) is the payout for claim i as a function of latent claim type θi, which is uncertain at the time of
processing. Ci and Ci denote the policy’s minimum and maximum payout obligations. Delayi(θi) represents
cost associated with processing time (which may include penalties or legal escalation). The fraud score is
an externally or internally computed index bounded by ϕ, above which claims are flagged for additional
screening.

In simple terms, this agent manages the decision of how much to pay out and when. It tries to fulfil the
firm’s promises to policyholders but must be careful not to pay more than contractually required—or too
quickly if the claim appears suspicious. Its job is about fairness, vigilance, and legal correctness under time
pressure.

Fraud Detection Agent

The fraud detection agent operates in parallel with the claims and underwriting processes, monitoring for
anomalous patterns or inconsistent declarations that may indicate intentional misrepresentation. Its purpose
is to identify and flag high-risk cases for further review, thereby reducing exposure to internal and external
manipulation. It leverages probabilistic models, anomaly detection algorithms, or learned patterns to assess
the integrity of incoming data. This agent is preventive in nature and does not directly affect financial
outcomes but modifies the decision space of other agents. Formally, the fraud agent solves:

max
f∈F

n∑
i=1

E[TPi(θi)]− µ · E[FPi(θi)] (29)

s.t. Scorei(θi) = M(xi) ∀i (Fraud model output) (30)

Flagi = I[Scorei(θi) > ϕ] ∀i (Threshold decision) (31)

In this formulation, TPi and FPi represent the expected true and false positives for claim or policy
i under the agent’s detection regime. µ is a penalty parameter on false positives to discourage excessive
filtering. M(·) is a predictive model mapping observable features xi to a fraud score. Claims or applications
are flagged if their score exceeds a risk threshold ϕ.

In simple terms, this agent watches for red flags. It uses data to guess which claims or applications might
be fake or manipulated. If the score is too high, the case gets flagged for deeper review. It helps protect the
insurer from bad actors without blocking genuine customers.

Compliance and Legal Agent

The compliance and legal agent ensures that all internal decisions and external product features adhere to
applicable regulations and governance norms. It enforces admissibility under frameworks such as Solvency
II, the Insurance Distribution Directive (IDD), the General Data Protection Regulation (GDPR), the AI
Act, and ESG-related disclosure rules. This agent does not optimise profit directly, but constrains the action
space of all other agents by validating whether decisions are legally and ethically permissible. Formally, the

JNGR 5.0, Volume 1, Issue 4, May-June 2025, Page 7

www.jngr5.com
editor@jngr5.com


Journal of Next-Generation Research 5.0 Website: www.jngr5.com Email: editor@jngr5.com

agent implements a filtering operator:

∀i : afinal
i =

{
ai if ai ∈ Dlegal ∩ EESG,E ∩ GESG,S&G

∅ otherwise
(32)

Here, ai denotes the proposed action from agent i, and afinal
i is the admissible action after legal and

ethical screening. The operator enforces exclusion if any rule—legal, environmental, social, or governance—is
violated. ESG-S&G includes procedural fairness, transparency, stakeholder inclusion, and traceability of
decisions.

In simple terms, this agent acts as the internal regulator. It checks whether actions suggested by other
agents—such as new products, capital decisions, or underwriting rules—are legally allowed and ethically
sound. If not, the action is blocked. It ensures the company plays by the rules and maintains reputational
integrity.

Employee Interface Agent

The employee interface agent serves as a controlled gateway between personnel and the AI-based decision
architecture of the insurance system. Its objective is to maximise the individual work utility of each employee
by providing context-relevant access to agent outputs—such as those from underwriting, claims, or com-
pliance—while enforcing strict internal control over data visibility, traceability, and policy adherence. Each
employee e ∈ E operates within an organisational role r ∈ R, which defines their permitted query set and
data access tier. The agent facilitates system interaction through a filtered interface, while ensuring com-
pliance with data protection obligations (e.g. GDPR), internal governance rules, and audit requirements.
Formally, the agent solves the following constrained optimisation problem for each employee:

max
qe∈Qr

E [Ue (L(qe,ar
context))] (33)

s.t. r ∈ Rpermitted(e) (Role-based access) (34)

ar
context ⊆ Aglobal (Tier-constrained context) (35)

log(qe, t, e) ∈ Laudit (Supervisory auditability) (36)

Here, qe denotes a query submitted by employee e, and ar
context is the filtered view of the agent system

state accessible under role r. The global state Aglobal comprises all structured outputs from other agents.
The function L(·) is the LLM interface that maps decision-relevant data to human-readable outputs. The
utility function Ue(·) reflects the employee’s expected task efficiency or decision quality from receiving this
response. Constraint (34) ensures that the role is authorised; (35) enforces tier-based data isolation; and
(36) requires that every query is logged, timestamped, and auditable.

In simpler terms, this setup ensures that each employee gets exactly the information they need to do their
job—no more, no less. Their role in the company defines what they are allowed to see. All their requests are
checked, filtered, and recorded so that sensitive data stays protected and everything remains transparent
and traceable. To operationalise the tiered system, the agent applies a conditional access mapping:

Responsee =

{
L(qe,ar

context) if r ∈ Rpermitted(e)

∅ otherwise
(37)

This structure ensures that only admissible query–role combinations produce responses. For example, a
call centre employee might access only claim-level summaries or policy status updates, whereas compliance
officers can view audit logs, and executives are granted high-level system metrics and inter-agent coordination
summaries. Role hierarchies are enforced dynamically through the internal access control engine, which
references Rpermitted(e) and monitors all activity under Laudit. In functional terms, the employee interface
agent enables precise, lawful, and productive human-AI interaction across the organisational hierarchy.

Put simply, the system checks who is asking and only gives an answer if the person’s role allows it.
A junior employee might see only the basics needed for their task, while senior staff get broader insights.
Everything is filtered automatically so that access always matches the person’s position and responsibility
in the company.

Stakeholder Interface Agent

The stakeholder interface agent manages external access to the AI system by institutional and individual
actors such as policyholders, regulators, auditors, shareholders, and business partners. Each stakeholder
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class is assigned a predefined visibility tier based on its contractual position, regulatory entitlement, or infor-
mation rights. The agent ensures that external queries are resolved within lawful, contract-compliant, and
context-specific boundaries, reflecting obligations under ESG-S&G standards—particularly explainability,
procedural fairness, and inclusive governance. The objective of the stakeholder interface agent is to maximise
the relevance and interpretability of information provided to authorised external users, without breaching
confidentiality or exceeding regulatory limits. Each stakeholder s ∈ S is mapped to a visibility tier, which
governs their admissible query set and contextual scope. Formally, the agent solves:

max
qs∈Qs

E [Us (L(qs,as
context))] (38)

s.t. s ∈ Sauthorised (Stakeholder authentication) (39)

as
context ⊆ Aglobal (Tiered data scope) (40)

log(qs, t, s) ∈ Laudit (Audit trace) (41)

Here, qs is a structured query submitted by stakeholder s, and Qs is the set of queries permitted at that
stakeholder’s access level. as

context is the filtered agent context available to that tier, constrained by Aglobal,
the complete internal state. The function L(·) maps internal decisions into legally intelligible responses,
adapted to jurisdiction, stakeholder contract, and purpose. The expected utility function Us(·) captures the
relevance and decision-usefulness of the returned information. Constraint (39) enforces access authentication;
(40) restricts data exposure; and (41) ensures full supervisory traceability.

In simpler terms, this agent answers stakeholder questions using only the data they are legally allowed
to see. It ensures that every external user—whether a customer, regulator, or investor—receives information
that is relevant to their role, without exposing internal logic or private data. All interactions are tracked
and audited to ensure lawful and accountable communication.

Stakeholder queries are processed under a conditional access mapping, where each stakeholder is assigned
to a predefined access tier that determines which parts of the system they are permitted to view. This tiered
structure reflects legal rights, contractual roles, and regulatory status, ensuring that each query is resolved
only within the boundaries of the stakeholder’s assigned level.

Responses =

{
L(qs,as

context) if s ∈ Sauthorised

∅ otherwise
(42)

This logic guarantees that each authorised stakeholder receives precisely the subset of information nec-
essary for their role. A policyholder can access personal contracts, coverage parameters, and claim status. A
regulator is entitled to solvency compliance data, ESG indicators, and audit trails. A shareholder may view
profitability breakdowns, capital allocation, and long-run portfolio structure. Smart contract enforcement
and role registries dynamically govern access rights under Sauthorised.

Put simply, this rule acts like a smart filter. Only stakeholders with proper authorisation receive tailored
answers to their questions. Everyone else gets nothing. This prevents unauthorised access and ensures that
each user sees only what they are meant to—no more, no less.

Client Service Agent

The client service agent governs interactive access for existing policyholders, enabling personalised com-
munication regarding policy coverage, claim progression, premium adjustments, renewals, and contractual
terms. Its objective is to maximise customer clarity and decision-readiness while ensuring that all disclosures
remain compliant with legal, contractual, and data protection boundaries. Each client c ∈ C is associated
with a current contract, a policy data record pc, and a visibility tier based on policy status and jurisdiction.
Formally, the client service agent solves:

max
qc∈Qc

E [Uc (L(qc,pc,astatus))] (43)

s.t. c ∈ Cactive (Contract status) (44)

pc ∈ Pentitled(c) (Policy-bound visibility) (45)

log(qc, t, c) ∈ Laudit (Interaction traceability) (46)

Here, qc is a query submitted by client c, andQc is the set of permitted queries under their active contract.
The variable pc represents their personalised policy attributes (e.g. coverage limits, deductibles, renewal
terms), while astatus includes dynamic operational information such as claim updates or payment schedules.
The LLM interface L(·) converts structured internal data into accessible, legally compliant responses. The
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utility function Uc(·) reflects perceived information value, clarity, and support for action by the client.
Constraints (44) and (45) limit visibility to entitled content only, while (46) ensures that all exchanges are
auditable.

In simpler terms, the system checks whether a person is a valid, active customer and then tailors the
response based on their contract. It helps them understand their rights, monitor their claims, and make
informed choices—while keeping a clear record of every request and answer. To implement this logic, the
agent applies a conditional access mapping:

Responsec =

{
L(qc,pc,astatus) if c ∈ Cactive
∅ otherwise

(47)

This structure ensures that only currently entitled policyholders receive access to personalised, contract-
linked information. The visibility scope depends on the client’s policy type, current status (e.g. in-claim,
pending renewal), and applicable legal protections. For example, a health insurance client in an open claim
may query reimbursement timelines, while a property policyholder near renewal can request premium com-
parisons. The filtering logic reflects a tiered access model tied to dynamic contract context and compliance
policy.

Put plainly, this agent acts like a personalised digital advisor: it checks if someone is still an active client
and then answers questions based only on what they are allowed to see. It keeps things clear, relevant, and
legal—without ever showing what doesn’t belong to them.

Client Acquisition Agent

The client acquisition agent is responsible for engaging potential customers, mapping product offerings
to prospect profiles, and pre-filtering applications for underwriting relevance. It operates upstream of the
underwriting agent and integrates with marketing, pricing, and legal modules. Its role is to generate qualified
leads, screen suitability, and deliver regulatory pre-contractual information in accessible language. The agent
is constrained by marketing compliance rules and fairness requirements under anti-discrimination directives.

Formally, the agent implements a pre-qualification mapping:

psuggested = Mmap(xprospect) if xprospect ∈ Xadmissible (48)

Here, xprospect contains declared or inferred features of a potential customer (e.g. age, location, coverage
needs), and Mmap(·) maps these features to a product recommendation psuggested, subject to legal filters
Xadmissible (e.g. no discriminatory profiling, marketing restrictions). The agent also exposes LLM interfaces
for interactive product comparison, consent dialogue, and onboarding FAQs.

In effect, this agent serves as the public face of the firm’s system, converting prospects into compliant
applications. It educates, filters, and prepares the ground for underwriting by delivering structured pre-
application guidance, all while ensuring that acquisition processes are transparent, equitable, and regulatorily
compliant.

System Orchestrator Agent

The system orchestrator agent serves as the supervisory layer responsible for ensuring global consistency,
strategic alignment, and institutional coherence across all subordinate agents. It oversees multi-agent coordi-
nation, verifying that local decisions—while independently optimised—collectively satisfy the legal, financial,
and operational constraints of the organisation. The orchestrator does not perform direct optimisation;
instead, it acts as a global validator of admissibility, equilibrium, and inter-agent alignment. Formally, the
orchestrator monitors whether the system-wide agent state {a1, . . . ,an} respects both the global objective
structure and admissibility envelope:

{ai}ni=1 ∈ arg max
a1,...,an

∑
i

E[Ui(πi(ai,a−i))] s.t. global feasibility and coordination constraints (49)

Its role is to verify system-wide admissibility and consistency and to authorise or reject execution based
on validation:

Approved =

{
1 if all admissibility, consistency, and coordination rules are met

0 otherwise
(50)
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The orchestrator integrates several supervisory mechanisms to enforce institutional coherence. First, it
performs constraint propagation across agent boundaries, ensuring that local admissibility conditions do not
conflict when aggregated at the system level. Second, it verifies role-permission consistency across agents,
maintaining uniformity in how organisational roles are mapped to actions and data access within different
subsystems. Third, it monitors for cross-agent conflicts—such as contradictory objectives, redundant actions,
or mutual constraint violations—and triggers resolution logic when necessary. Finally, the orchestrator aligns
internal agent decisions with external supervisory expectations and the firm’s strategic objectives, ensuring
that the AI system acts in accordance with institutional goals and regulatory mandates.

It may override, veto, or delay decisions that would introduce institutional incoherence, constraint
violations, or regulatory breaches. While the legal/compliance agent enforces rule-level admissibility for
individual actions, the orchestrator governs **system-level integration** and strategic consistency. LLM
modules attached to this agent may generate system summaries, policy explanations, or audit statements
for institutional stakeholders (e.g. board, regulators).

In simpler terms, this agent makes sure that the AI system behaves like one coordinated organisation—not
a set of disconnected bots. It checks that all decisions fit together, follow the rules, and support the company’s
overall strategy before anything gets executed.

4 Unified Agent System and Communication Logic

To complete the agent-based system architecture, we introduce a unified optimisation structure that inte-
grates both internal decision agents and human interface agents within a single analytical expression. This
formulation provides a consistent basis for verifying system-wide admissibility, equilibrium, and institutional
alignment. It enables the orchestration layer to assess the joint admissibility of all agent actions and user
queries before any execution occurs. The integration of human-in-the-loop components into the agent archi-
tecture does not require the introduction of a separate communication agent. Instead, the dedicated interface
agents—employee, stakeholder, and client—already serve as structured access points under role-based gov-
ernance. These agents enforce strict admissibility rules through data filtering, role-tier mappings, and audit
logs. Their outputs are routed through the System Orchestrator Agent, which validates whether all result-
ing actions and queries cohere with the institutional constraints of the firm. This routing logic preserves
modular clarity while avoiding the control fragmentation that would result from parallel coordination layers.
Introducing an additional communication core would dilute accountability, obscure institutional logic, and
conflict with the compliance-by-design principles underlying the system. Formally, the global optimisation
problem can be written as:

max
{ai},{qj}

n∑
i=1

E[Ui(πi(ai,a−i))] +

m∑
j=1

E[Vj(L(qj ,αj))] (51)

s.t. ai ∈ Di ∩ Ei ∩ Gi ∩ Oi, ∀i (52)

qj ∈ Qj , αj ⊆ Aglobal, rj ∈ Rpermitted(j), ∀j (53)

{ai}, {qj} ∈ Avalid (system-level admissibility verified by orchestrator) (54)

Here, ai denotes the action vector of internal agent i and πi(·) is the agent-specific decision function,
potentially dependent on the actions a−i of other agents. The function Ui(·) measures the expected utility
of the action, incorporating performance, compliance, or risk-based criteria. Each query qj is submitted by
a human-facing interface agent j and evaluated through a large language model L(·) applied to a filtered
context αj , drawn from the global agent state Aglobal. The function Vj(·) captures the informational or
operational utility returned to the user. The admissibility conditions restrict each internal action to the
intersection of legally, environmentally, socially, and operationally permitted domains. Interface queries must
be issued under valid role authorisations rj , conform to data access constraints, and remain fully traceable.
The orchestrator confirms that the combined set of actions and queries is admissible, non-contradictory, and
institutionally consistent.

In simple terms, this equation brings all agent decisions—both machine-made and human-triggered—into
one system-wide logic. Each agent tries to do its job well, and each user-facing agent responds only within
allowed limits. Nothing proceeds until the orchestrator has checked that every action and answer fits together
without breaking any legal or operational rule. This avoids having too many control layers and ensures the
AI system behaves like one coherent institution.
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5 Protocols and Agent Integration in Enterprise AI

The deployment of multiple agents in enterprise AI arises from the functional decomposition of insurance
firms into distinct domains—capital allocation, underwriting, compliance, and claims handling—each gov-
erned by specific constraints, data privileges, and decision logic. Decentralisation alone is insufficient. To
ensure coherence, regulatory admissibility, and shared utility optimisation, agents must be coordinated via
protocol layers that standardise context propagation, state transfer, and inter-agent reasoning. This neces-
sitates interoperability frameworks such as the Model Context Protocol (MCP) and Agent-to-Agent (A2A)
messaging standards. Enterprise AI systems operate asynchronously across heterogeneous components with
divergent compute schedules, partial observability, and uneven access to real-time data. Synchronous coor-
dination introduces latency and fragility. Asynchronous architectures mitigate these issues by decoupling
data availability from execution. Tadi [29] shows that asynchronous data handling enhances Progressive
Web Application robustness, supporting offline operation and non-blocking updates—critical for agent con-
tinuity in intermittently connected environments. At the training level, asynchronous federated learning
enables model updates without central synchronisation [17], reinforcing system resilience. Beyond architec-
tural theory, empirical studies demonstrate that agent communication latency increases with message size
and agent count. Berna-Koes et al. [5] show that message delays can grow non-linearly in multi-agent net-
works unless efficient backchannel protocols are implemented. Further, in delay-sensitive coordination tasks,
latency-aware communication models such as DACOM [31] significantly enhance performance by adapt-
ing decision logic to inter-agent delays. Lei et al. [21] provide a framework for synchronising asynchronous
perceptual features in collaborative systems, improving agent robustness in high-latency environments. In
regulated domains such as insurance, empirical auditability standards further constrain system design. The
UK Financial Conduct Authority requires AI systems to provide traceable decision logs within 24–72 hours of
execution [3]. The Financial Stability Board emphasises the importance of explainability and audit resilience
to manage systemic risks in AI-driven financial services [7]. These empirical thresholds reinforce the need
for persistent state management and protocol-level memory that can support post-hoc review under insti-
tutional supervision. The Agent-to-Agent (A2A) protocol, introduced by Google, standardises inter-agent
messaging across frameworks such as LangGraph, CrewAI, and AutoGen by defining shared syntax for
intention, memory, and task state. A2A allows agents built in distinct runtime environments to exchange
structured content—decisions, delegation requests, alerts—while decoupling role semantics from implemen-
tation. In heterogeneous enterprise settings, where agents vary in logic paradigms or regulatory models,
A2A enables coordination between, for example, an LLM-based compliance module and a rule-based pricing
agent. As noted in [1], A2A promotes composability by providing a shared abstraction for communication,
aligning objectives under constrained interoperability. While A2A addresses syntactic and messaging com-
patibility, the Model Context Protocol (MCP) governs semantic coherence and memory persistence. MCP
structures context propagation and state retention, enabling agents to reason over shared histories, hier-
archical goals, and environmental signals. Krishnan [20] highlights MCP’s capacity to encode long-range
dependencies, allowing agents to retain mission-critical knowledge—e.g., regulatory thresholds, prior deci-
sions, or user interactions—vital in financial or legal workflows. MCP functions as the institutional memory
layer, necessary for consistency, justification of contingent decisions, and compliance transparency. Nara-
jala and Habler [22] further underscore MCP’s role in auditability, enabling ESG alignment and AI Act
compliance by preserving reasoning chains and allowing decision context replay. A2A and MCP are not
substitutes but complements: A2A ensures technical interoperability and communication reliability; MCP
secures semantic alignment and persistent memory. Together, they constitute a dual-stack foundation for
robust, auditable multi-agent systems. Protocol-level design is thus not a technical convenience but a regu-
latory and operational necessity. The Agent-to-Agent (A2A) protocol, introduced by Google, standardises
inter-agent messaging across frameworks such as LangGraph, CrewAI, and AutoGen by defining shared syn-
tax for intention, memory, and task state [16]. A2A allows agents built in distinct runtime environments to
exchange structured content—decisions, delegation requests, alerts—while decoupling role semantics from
implementation. In heterogeneous enterprise settings, where agents vary in logic paradigms or regulatory
models, A2A enables coordination between e.g., an LLM-based compliance module and a rule-based pricing
agent. As noted in [1], A2A promotes composability by providing a shared abstraction for communication,
aligning objectives under constrained interoperability. While A2A addresses syntactic and messaging com-
patibility, the Model Context Protocol (MCP) governs semantic coherence and memory persistence. MCP
structures context propagation and state retention, enabling agents to reason over shared histories, hierar-
chical goals, and environmental signals [18]. Krishnan [20] highlights MCP’s capacity to encode long-range
dependencies, allowing agents to retain mission-critical knowledge—e.g., regulatory thresholds, prior deci-
sions, or user interactions—vital in financial or legal workflows. MCP functions as the institutional memory
layer, necessary for consistency, justification of contingent decisions, and compliance transparency. Nara-
jala [22] further underscores MCP’s role in auditability, enabling ESG alignment and AI Act compliance
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by preserving reasoning chains and allowing decision context replay. A2A and MCP are not substitutes but
complements: A2A ensures technical interoperability and communication reliability; MCP secures semantic
alignment and persistent memory. Together, they constitute a dual-stack foundation for robust, auditable
multi-agent systems [18, 16]. MCP ensures that agent interactions are contextually meaningful; A2A ensures
they remain operable across environments.

Protocol-level design is thus central to enterprise AI. The insurance architecture proposed here builds
upon this dual-protocol paradigm, combining asynchronous operation with explainable, persistent decision
memory to meet institutional and regulatory demands.

6 Conclusion

This paper presents a formal architecture for implementing enterprise AI in regulated insurance firms,
grounded in firm theory, constrained optimisation, and institutional logic. The insurer is modelled as a
structured decision system subject to solvency constraints, legal admissibility, ESG obligations, and internal
feasibility limits. This framework enables a principled decomposition of the firm’s behaviour into analytically
distinct subfunctions aligned with regulatory and strategic demands.

A multi-agent architecture defines each functional domain—capital management, underwriting, claims,
and compliance—as a bounded rational agent operating within a shared constraint environment. Local
decision models integrate directly into the firm’s institutional structure, ensuring that optimisation occurs
strictly within admissible legal, financial, and ESG boundaries.

An orchestrator agent enforces system-level coherence, validating inter-agent alignment, propagating
global constraints, and maintaining institutional consistency. Protocol-level infrastructures such as asyn-
chronous coordination, memory persistence, and semantic interoperability via MCP and A2A support
structured communication across heterogeneous agent modules.

This framework advances the structural modelling of regulated firms by embedding regulatory, oper-
ational, and governance constraints into the decision logic itself. Unlike conventional models that treat
compliance as an external layer, this architecture integrates institutional constraints into core decision pro-
cesses, forming a foundation for building auditable, compliant AI systems in high-stakes institutional domains
where formal accountability and systemic coherence are essential.
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