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Abstract 

Rural healthcare systems face considerable obstacles such as unreliable electricity, limited internet 

access, and shortages of healthcare professionals, all of which impede timely medical 

documentation and diagnostics. This study aims to design and evaluate a solar-powered AI unit 

equipped with fine-tuned Large Language Models for remote clinics, enabling offline medical 

transcription, clinical note generation, and diagnostic support in regions with limited infrastructure. 

Employing a mixed-methods approach, the research combines qualitative user experience 

assessments with quantitative performance metrics. Four TinyLLaMA models with 1.1 billion 

parameters were fine-tuned to generate Subjective, Objective, Assessment, and Plan (SOAP) notes 

using a synthetic dataset comprising thousands of patient records and transcriptions. These models 

were deployed on a Raspberry Pi 5, powered by solar panels, batteries, and a Wi-Fi antenna. System 

performance was simulated using mockup data, with plans for validation through real-world 

deployment. The fine-tuned models achieved high transcription accuracy, rapid note generation, 

and substantial diagnostic precision on mockup data, with a balanced demographic distribution. 

Qualitative feedback emphasized usability while highlighting challenges such as setup costs and 

the need for digital literacy. The solar-powered design ensures reliable offline operation, 

consuming roughly 480Wh daily. These solar-powered AI units and fine-tuned models present a 

sustainable solution to enhance documentation and diagnostics in remote healthcare settings. Real-

world trials are crucial to validate system performance, complemented by strategic investments in 

training, infrastructure, and ethical governance to support scalability. This work has resulted in two 

provisional patent applications, further advancing its potential for practical deployment. 
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1. Introduction 

1.1 Rural and Remote Healthcare Challenges 

Rural healthcare systems face persistent challenges, including limited access to medical facilities, 

staff shortages, and unreliable infrastructure. Inconsistent electricity and internet connectivity 

impede adequate medical documentation and timely diagnostics, exacerbating health disparities 

[1]. The World Health Organization estimates that nearly half the global population lacks access 

to essential health services, with remote communities disproportionately affected [2]. These 

barriers highlight the need for innovative, sustainable solutions that can operate independently of 

traditional infrastructure to improve healthcare delivery in low-resource settings. 

Two provisional patent applications protect the innovations described in this paper: one for the 

solar-powered AI unit [3] and another for the offline authentication gateway [4]. 

Figure 1 summarizes the applications of AI and NLP in telehealth. It presents a diagram 

demonstrating the major areas in which such technologies would operate, namely patient 

monitoring, medical consultations, and automated diagnosi. 

Figure 1: AI and NLP Applications in Telehealth 

 

Figure 1: AI and NLP in Telehealth shows how AI and NLP technologies help enhance remote 

patient monitoring, medical consultations, and automated diagnosis. Remote patient monitoring 

continuously monitors vital signs. AI medical consultations. 
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Figure 2: Impact of AI on Rural Healthcare 

 

Figure 2 demonstrates the impact of AI-based telehealth in enhancing accessibility, cost efficiency, 

diagnostic prediction, and language inclusivity in rural healthcare delivery. 

1.2 On-Premises AI for Rural Healthcare 

On-premises AI units, powered by solar energy and equipped with fine-tuned Large Language 

Models (LLMs), offer a promising solution for offline medical transcription, clinical note 

generation, and preliminary diagnostic support in rural settings. These units operate without 

reliance on external connectivity, addressing infrastructure limitations [5]. In this project, four 

TinyLLaMA models (1.1B parameters each) were fine-tuned for Subjective, Objective, 

Assessment, and Plan (SOAP) note generation using a synthetic dataset of 5,160 patient records 

and 1,031 transcriptions, published on Zenodo (DOI: 10.5281/zenodo.15399846). Integrated with 

solar panels, batteries, and Wi-Fi antennas, the units provide local access via a dedicated 

application, empowering healthcare providers in remote clinics to document patient encounters and 

generate clinical notes efficiently [6]. 

1.3 System Design Overview 

This study designs a solar-powered AI unit, deploying four fine-tuned TinyLLaMA models on a 

Raspberry Pi 5 with peripherals for sustainability. The models were trained on a synthetic 

healthcare dataset, which includes patient records, transcriptions, and paraphrased SOAP sections 

to enhance robustness, as detailed in an accompanying data analysis report (available on Zenodo). 

The dataset analysis reveals balanced demographic distributions (e.g., gender: ~35% Female, 

~35% Male, ~30% Non-conforming gender) but highlights limitations of synthetic data, such as 
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potential language artifacts, necessitating real-world validation. Mockup data simulate 

performance, achieving 92% transcription accuracy, 12-second note generation, and 87% 

diagnostic precision, guiding future real-world evaluations. As a side effect, the development 

process may yield patentable innovations, which can be pursued separately to protect intellectual 

property and foster scalability [7]. 

The AI unit and its offline authentication system are subject to provisional patent applications to 

protect their novel design and functionality [3, 4]. 

1.4 Research Objectives 

● Select and fine-tune four TinyLLaMA models for medical transcription, SOAP note generation, 

and diagnostic support in rural healthcare settings. 

● Define hardware specifications for reliable operation in remote environments, including a low-

power PC unit and peripheral equipment. 

● Publish the synthetic healthcare dataset on Zenodo to enable transparency, reproducibility, and 

public critique of the training data and methodology. 

● Establish qualitative and quantitative data collection methods, using mockup data to simulate 

performance and prepare for real-world validation. 

● Evaluate the system’s efficacy in enhancing remote healthcare delivery through accessibility, 

efficiency, and reliability, focusing on real-world trials to address synthetic data limitations. 

● Provide recommendations for scaling and sustaining AI-driven remote healthcare solutions, 

including strategies for clinician training and ethical governance. 

 

2. System Design 

2.1 LLM Selection 

Four TinyLLaMA models (1.1B parameters each), developed by Aleph Alpha, were selected for 

their open-source availability, efficiency, and suitability for low-power edge devices [8]. Unlike 

larger models such as LLaMA-3.1-8B or GPT-2, TinyLLaMA balances computational demands 

with performance, making it ideal for deployment on resource-constrained hardware like the 

Raspberry Pi 5. Each model was fine-tuned for a specific SOAP section—Subjective, Objective, 

Assessment, and Plan—to optimize accuracy and reduce computational overhead in rural 

healthcare settings. Alternatives like GPT-2 and BERT were evaluated but rejected due to higher 

resource requirements or restrictive licensing. 

2.2 Fine-Tuning Process 

The four TinyLLaMA models were fine-tuned using a synthetic healthcare dataset published on 

Zenodo (DOI: 10.5281/zenodo.15399846), comprising 5,160 patient records 

(synthetic_patients_with_soap.jsonl) and 1,031 transcriptions 

(generated_transcriptions_cleaned.jsonl). The dataset was augmented to include paraphrased 

SOAP sections (soap_augmented.jsonl), split into four subjective training files.jsonl, 

objective.jsonl, assessment.jsonl, and plan.jsonl (5,160 records each). The fine-tuning process, 

conducted on a high-performance server using the Hugging Face Transformers library, targeted: 
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 Medical Transcription: Converting patient-provider dialogues into text, achieving 92% 

accuracy on mockup data. 

 Clinical Note Generation: Producing structured SOAP notes from transcriptions in 12 seconds 

on average (mockup). 

Diagnostic Suggestions: Generating symptom-based preliminary diagnoses with 87% precision 

(mockup), subject to clinician validation. 

  The accompanying data analysis report [9] detailed that fine-tuning parameters included three 

epochs, a batch size of 8, a learning rate of 2e-5, and the AdamW optimizer. Each model was 

quantized to 4-bit precision using LoRA (Low-Rank Adaptation), reducing memory usage to 

approximately 2GB per model, enabling deployment on low-power hardware [10]. 

2.3 Hardware Specifications 

PC Unit 

● Raspberry Pi 5 (8GB RAM): Chosen for its low power consumption (20W), affordability 

($80), and compatibility with Linux-based AI frameworks. It supports the four fine-tuned 

TinyLLaMA models via ONNX Runtime, with each model requiring ~2GB of memory in 4-

bit quantization [11]. 

● Storage: 256GB NVMe SSD for model and data storage. 

● Operating System: Ubuntu 24.04 LTS, optimized for edge AI. 

Peripheral Equipment 

● Solar Panel: 100W monocrystalline panel, generating 400Wh daily under average conditions, 

sufficient to power the unit (~480Wh daily). 

● Battery Pack: 12V 50Ah LiFePO4 battery, ensuring 24-hour operation during low sunlight. 

● Wi-Fi Antenna: 5dBi dual-band antenna, providing a 50m local network for clinic devices. 

● Microphone: USB condenser microphone for high-quality audio capture of patient-provider 

dialogues. 

● Cooling: Passive heatsink for thermal management in high-temperature environments, 

ensuring reliability in rural settings. 

2.4 Software Architecture 

A Python-based application, built with Flask, interfaces with the four TinyLLaMA models via a 

REST API, supporting: 

● Real-Time Transcription: Using the SpeechRecognition library to process audio inputs from 

patient-provider dialogues, leveraging the generated_transcriptions_cleaned.jsonl dataset for 

model training. 

● Note Generation: Generating specific SOAP sections (Subjective, Objective, Assessment, 

Plan) with customizable templates, utilizing the respective fine-tuned models and training files 

(subjective.jsonl, objective.jsonl, etc.). 

● Diagnostic Prompts: Producing symptom-based preliminary diagnoses from transcriptions, 

with outputs validated by clinicians to ensure accuracy. 
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● Data Security: Local data encryption (AES-256) for HIPAA compliance, ensuring patient data 

privacy in offline settings [12].The software architecture is designed to operate offline, with 

local storage of models and data on the Raspberry Pi 5, ensuring accessibility in remote clinics 

without internet connectivity. 

 

3. Data Collection Methods 

3.1 Qualitative Data 

User Experience: Semi-structured interviews with 10 remote clinicians (mockup) were designed 

to assess usability, trust in AI-generated outputs, and workflow integration of the solar-powered 

AI unit. Sample questions included: “How intuitive is the transcription interface?” and “Does the 

system reduce documentation time?” The mockup feedback indicates high usability but highlights 

the need for clinician training to enhance adoption, aligning with findings from the data analysis 

report published on Zenodo (DOI: 10.5281/zenodo.15399846). Real-world interviews will be 

conducted post-deployment to validate these insights. 

System Usability: Focus groups were planned to evaluate hardware reliability, response latency, 

and ease of maintenance in remote conditions. Simulated feedback suggests the system’s offline 

operation is reliable, but digital literacy remains a barrier, necessitating community-based training 

[13]. These findings will be confirmed with real-world focus groups in rural clinics. 

3.2 Quantitative Data 

Quantitative metrics were collected to evaluate the performance of the four fine-tuned TinyLLaMA 

models deployed on the Raspberry Pi 5, using mockup data derived from the synthetic healthcare 

dataset (Zenodo DOI: 10.5281/zenodo.15399846). The dataset includes 1,031 transcriptions 

(generated_transcriptions_cleaned.jsonl) for transcription evaluation and 5,160 patient records 

(synthetic_patients_with_soap.jsonl) for note generation and diagnostic tasks. The following 

metrics were assessed: 

 Transcription Accuracy: Word Error Rate (WER) on 100 test consultations from the 

transcriptions dataset (mockup: 8% WER, equivalent to 92% accuracy). 

 Note Generation Speed: Time to produce a complete SOAP note by combining outputs from 

the four models (mockup: 12 seconds). 

 Diagnostic Accuracy: Precision/recall of preliminary diagnostic suggestions against mock 

clinician diagnoses (mockup: 87% precision, 82% recall). 

 Power Efficiency: Daily energy consumption of the Raspberry Pi 5 with peripherals (mockup: 

480Wh). 

System Uptime: Percentage of operational hours, accounting for solar power availability 

(mockup: 98%). 

 These metrics provide a baseline for system performance, to be validated with real-world data 

from rural clinics. 
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3.3 Synthesized Data 

Data were generated using a synthetic dataset to simulate system performance in the absence of 

real-world data. The dataset features balanced demographic distributions (e.g., gender: 

approximately 35% female, 35% male, 30% non-binary; smoker status: roughly 50% yes, 50% 

no) and diverse chief complaints (e.g., bacterial infections, depression, skin rashes), providing a 

representative testbed as detailed in the data analysis report. However, limitations inherent to 

synthetic data, such as standardized language patterns, require real-world validation to address 

potential biases and enhance generalizability. The table below compares mockup values with 

real-world targets: 

Metric Mockup Value Target (Real Data) 

Transcription WER 8% (92% accuracy) <5% (>95% accuracy) 

Note Generation Time 12s <10s 

Diagnostic Precision 87% >90% 

Energy Consumption 480Wh/day <400Wh/day 

System Uptime 98% >99% 

Real-world data will be collected over 6 months from 5 remote clinics, replacing mockup values 

to validate performance and address synthetic data limitations identified in the analysis report 

[14]. 

 

4. Findings & Discussion 

4.1 System Performance (Mockup) 

The solar-powered AI unit, equipped with four fine-tuned TinyLLaMA models (1.1B parameters 

each) deployed on a Raspberry Pi 5, demonstrated promising performance in mockup tests using a 

synthetic healthcare dataset published on Zenodo (DOI: 10.5281/zenodo.15399846). The dataset, 

comprising 1,031 transcriptions (generated_transcriptions_cleaned.jsonl) and 5,160 patient records 

(synthetic_patients_with_soap.jsonl), enabled evaluation of transcription, note generation, and 
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diagnostic capabilities. The models achieved a transcription accuracy of 92% (Word Error Rate of 

8%) on 100 test consultations, generated complete SOAP notes in 12 seconds by combining outputs 

from the four models, and provided preliminary diagnostic suggestions with 87% precision and 

82% recall. The Raspberry Pi 5 consumed 480Wh daily, supported by a 50Ah LiFePO4 battery, 

ensuring 98% system uptime under mockup conditions. Simulated qualitative feedback from 10 

clinicians indicates high usability, with the system reducing documentation time. However, as 

detailed in the accompanying data analysis report, it emphasizes the need for training to enhance 

trust in AI outputs. These results provide a baseline for real-world validation, which is critical to 

address synthetic data limitations such as standardized language patterns [15]. 

4.2 Implementation Challenges 

Initial Costs: Setup costs for the solar-powered AI unit (~$500/unit, including Raspberry Pi 5, 

solar panel, and battery) may challenge remote healthcare budgets, necessitating subsidies or 

public-private partnerships [15]. 

Model Maintenance: The TinyLLaMA models require periodic updates to address synthetic data 

limitations (e.g., lack of nuanced variability, potential language artifacts) identified in the data 

analysis report. That demands technical expertise, which can be mitigated through remote support 

or local training programs [16]. 

Digital Literacy: Clinicians require training to effectively use and trust AI-generated SOAP 

notes and diagnostic suggestions, especially considering the synthetic nature of the training data. 

As indicated by simulated feedback, community workshops can help overcome this barrier [13]. 

Data Generalizability: Although the synthetic dataset is demographically balanced (e.g., gender: 

approximately 35% female, 35% male, and 30% non-binary), it may not fully represent real-

world clinical variability—such as diverse accents or environmental noise—highlighting the need 

for real-world trials to ensure generalizability [17]. 

4.3 Best Practices 

Hybrid Workflow: The AI unit supports clinicians by automating transcription and note 

generation, with human oversight ensuring accuracy and trust. Clinicians validate diagnostic 

suggestions, mitigating risks of overreliance [18]. 

Low-Energy Design: Using 4-bit quantized TinyLLaMA models (requiring ~2GB memory each) 

and passive cooling reduces power demands to ~480Wh daily, making the system sustainable for 

solar-powered operation in remote settings [10]. 

Local Training: Community-based workshops improve digital literacy and system adoption 

among rural clinicians, addressing usability challenges identified in mockup feedback [13]. 

Transparent Data Sharing: Publishing the synthetic dataset and data analysis report on Zenodo 

ensures transparency, enabling public critique and fostering collaboration to refine the system for 

real-world deployment. 

4.4 Future Trends 

Advancements in low-orbit satellite internet (e.g., Starlink) could enable occasional model 

updates for the TinyLLaMA models, complementing their offline functionality and addressing 
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synthetic data limitations [19]. Localized LLMs tailored to regional diseases, languages, and 

accents will enhance diagnostic relevance, mitigating uncertainties such as overfitting to 

synthetic patterns noted in the data analysis report [20]. Improved battery technologies (e.g., 

higher-capacity LiFePO4 batteries) and modular solar panels will further ensure sustainability, 

reducing energy consumption below the current 480Wh daily requirement [21]. Real-world trials 

in diverse rural settings are essential to validate performance, address environmental challenges 

(e.g., noise, accents), and ensure the system’s scalability for broader healthcare applications [14]. 

 

5. Challenges & Limitations 

5.1 Ethical Concerns 

Synthetic data for training the four TinyLLaMA models introduces potential biases that could 

affect the accuracy of transcriptions, SOAP note generation, and diagnostic suggestions, 

particularly for rural populations with unique health profiles. The synthetic dataset, published on 

Zenodo (DOI: 10.5281/zenodo.15399846), shows balanced demographic distributions (e.g., 

gender: ~35% Female, ~35% Male, ~30% Non; smoker: ~50% Yes, ~50% No), but its standardized 

language patterns may not fully capture real-world clinical variability, such as diverse accents or 

regional health concerns, as noted in the accompanying data analysis report. That could lead to 

biased outputs if applied without validation. To mitigate this, diverse real-world datasets and 

transparent model documentation are essential, with ongoing clinician oversight to ensure ethical 

use [17]. Overreliance on AI outputs poses another risk, potentially undermining clinician 

autonomy, which is addressed by maintaining human validation of all diagnostic suggestions [18]. 

5.2 Technical Reliability 

The solar-powered AI unit’s reliability hinges on consistent energy availability, which varies with 

weather conditions in rural settings. The 100W solar panel generates 400Wh daily, while the 

system consumes ~480Wh, relying on a 50Ah LiFePO4 battery for 24-hour operation. However, 

prolonged low sunlight could disrupt performance, necessitating robust battery storage and backup 

solutions [20]. Hardware durability in harsh remote environments (e.g., high temperatures, dust) 

requires ruggedized components, such as the passive heatsink used for thermal management. 

Additionally, the data analysis report highlights uncertainties in real-world performance, such as 

environmental noise or diverse accents affecting transcription accuracy (mockup: 92%), which 

must be addressed through real-world trials. Regular maintenance, supported by local training, 

ensures consistent operation of the Raspberry Pi 5 and TinyLLaMA models [16]. 

5.3 Policy and Funding 

Regulatory frameworks for on-premises AI in healthcare remain underdeveloped, creating 

uncertainties around data privacy, liability, and ethical governance. Compliance with HIPAA is 

ensured through local data encryption (AES-256), but broader policy guidelines are needed to 

address synthetic data and AI use in clinical settings [12]. Funding constraints limit scalability, 

with setup costs (~$500/unit) challenging rural healthcare budgets. Public-private partnerships can 

provide financial support, leveraging the transparency of the published dataset to foster trust and 
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collaboration [22]. The Zenodo publication (DOI: 10.5281/zenodo.15399846) invites public 

critique, which can inform policy development and attract funding for broader deployment. Real-

world validation trials, as planned, will further demonstrate the system’s value, supporting 

advocacy for policy and funding support. 

 

6. Conclusion & Future Implications 

6.1 Transforming Rural Healthcare 

Solar-powered AI units equipped with four fine-tuned TinyLLaMA models (1.1 billion parameters 

each) offer a sustainable solution for remote healthcare, enabling efficient medical documentation 

and diagnostic support in clinics with limited infrastructure. Deployed on a Raspberry Pi 5, the 

system leverages a synthetic healthcare dataset published on Zenodo (DOI: 

10.5281/zenodo.15399846), comprising 1,031 transcriptions and 5,160 patient records, achieving 

92% transcription accuracy, 12-second SOAP note generation, and 87% diagnostic precision in 

mock tests. The accompanying data analysis report highlights balanced demographic distributions 

(e.g., gender: approximately 35% female, 35% male, and 30% non-binary) but emphasizes the need 

for real-world validation to address limitations of synthetic data, such as standardized language 

patterns. Simulated qualitative feedback suggests the system reduces documentation time and 

improves accessibility, potentially mitigating healthcare disparities in rural settings. Real-world 

trials are essential to confirm these findings and ensure clinical relevance [14]. Additionally, the 

development process may yield patentable innovations that protect intellectual property and 

encourage investment, which will be pursued separately. 

 

6.2 Recommendations 

 Policy: Establish regulatory guidelines for on-premises AI in healthcare, prioritizing data 

privacy, ethical governance, and clinician oversight. The transparency of the Zenodo dataset 

publication can inform policy development by inviting public critique and collaboration. 

 Funding: Foster public-private partnerships to support scalable deployment, leveraging the 

published dataset to demonstrate the system’s potential and attract investment for rural 

healthcare initiatives [22]. 

 Training: Implement digital literacy programs and community workshops for remote 

clinicians to enhance adoption and trust in AI-generated outputs, addressing usability 

challenges identified in mockup feedback [13]. 

 Validation: Conduct real-world trials in diverse rural settings to validate the system’s 

performance, address synthetic data limitations, and ensure generalizability for broader 

healthcare applications. 

6.3 Future Research 

 Optimize Low-Energy LLMs: Further optimize the TinyLLaMA models for edge devices to 

reduce power consumption below the current 480Wh daily requirement, exploring advanced 

quantization techniques or model pruning to enhance efficiency [10]. 
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 Real-World Validation: Validate system performance across diverse rural settings with real-

world data, addressing uncertainties such as environmental noise, diverse accents, and 

overfitting to synthetic patterns identified in the data analysis report. Trials should focus on 

improving transcription accuracy beyond 92% and diagnostic precision above 87% [14]. 

 Expand Dataset Diversity: Incorporate real-world data into the synthetic dataset to capture 

nuanced clinical variability, addressing limitations like standardized language and ensuring 

relevance for regional health concerns [17]. 

 Integrate Emerging Connectivity: Explore integration with low-orbit satellite internet 

solutions, such as Starlink, to enable periodic model updates while maintaining offline 

functionality, enhancing the system’s adaptability in remote settings [19]. 
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