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Abstract

Centralised AI infrastructure scales yet conflicts with latency, auditability and energy constraints. This paper sets
the objective to specify and analyse a Federated AI Infrastructure that is compatible with regulatory and ESG
commitments while remaining financeable for private operators. The design separates centralised training from
decentralised inference and storage across five node classes (µ, S, M, L, XL), coordinated by a verifiable orchestrator
and a permissioned DAG with asynchronous Byzantine fault tolerance. An incentive model links a size neutral
availability floor to tiered workload rewards with bounded multipliers for service level attainment, ESG performance
and anti concentration. Formal optimisation covers investor choice, congestion aware routing and policy instruments,
yielding equilibrium conditions for mixed class participation. Compliance is developed against the Swiss regime,
including token to fiat conversion through a regulated issuer under FINMA or an equivalent national authority, and
alignment with EU frameworks such as GDPR and ISO 27001. Results indicate a robust mixed fleet in which L
and XL nodes specialise in throughput intensive inference and ledger validation, while µ to M nodes provide edge
inference, storage and continuous DAG participation. Anti concentration terms and ESG adjusted pricing sustain
diversity without material efficiency loss. Implementation relies on trusted metering, on chain attestations and
posted pricing calibrated to observed queues. Limitations concern parameter identification, metering fidelity and
jurisdiction specific licensing.
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1 Introduction

Artificial intelligence is undergoing accelerated deployment across all sectors of the global economy. Large-
scale models are being applied in industrial optimisation, financial services, public administration and
national infrastructure. Governments, academic institutions and private entities are investing heavily in AI
compute capacity, resulting in rapid expansion of hyperscale data centres and training infrastructure. The
International Energy Agency projects that global data centre electricity demand will more than double by
2030, reaching approximately 945 TWh, with AI-optimised workloads as a primary driver. Data centres
already account for 1 to 2 percent of global electricity consumption [1].

This expansion is driven by geopolitical and economic imperatives but conflicts with environmental,
social and governance objectives. AI infrastructure requires substantial energy inputs, produces significant
thermal waste, and concentrates land use and resource control, often misaligned with local energy conditions
or sustainability targets. Research from MIT reports that North American data centre power demand rose
from 2,688 to 5,341 MW between 2022 and 2023. Cooling systems alone consume approximately 2 litres of
water per kWh used [2]. The carbon footprint of training large language models can exceed 500 tons of CO2,
and by 2035, annual AI-related emissions may reach 18 to 246 million tons [3].

Current data centre practices prioritise performance and centralised control over energy efficiency,
auditability and regulatory decentralisation. This approach raises structural issues for ESG-compliant digi-
tal infrastructure. A recent study on sustainable cloud computing projects that, by 2025, data centres may
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account for up to 20 percent of global electricity demand and 5.5 percent of total emissions if uncorrected [4].
The absence of standardised reporting frameworks limits transparency and restricts regulatory oversight [5].

Before the commercial release of ChatGPT in November 2022, companies now leading the AI sector
had publicly committed to ESG goals. Google had reached operational carbon neutrality by the mid-2000s
and transitioned to 100 percent renewable energy for its data centres by 2017. Microsoft had been carbon
neutral since 2012. Amazon launched its Climate Pledge in 2019, targeting net-zero emissions by 2040 and
full renewable energy reliance by 2030 [6, 7, 8].

Since late 2022, corporate strategies have shifted towards rapid scaling of generative model capabilities,
with performance and market control taking precedence over sustainability. Microsoft alone reported a 168
percent increase in AI-related energy demand, alongside a 23 to 29 percent rise in emissions since 2020
[9, 10]. Industry interviews confirm that most organisations prioritised operational efficiency in AI adoption
over environmental risk mitigation, with limited adherence to sustainability standards [11]. Economic studies
indicate that capital allocation to AI has displaced longer-term ESG investments [12].

This paper responds to these structural limitations by proposing a decentralised infrastructure model
for AI deployment and governance. The system consists of a federation of modular data centres distributed
across Swiss territory, designed to support inference execution, smart contract automation, decentralised
storage and ESG-aware orchestration. Coordination is implemented through formal incentives within a
tokenised and auditable framework, rather than centralised control or enforcement logic.

Switzerland provides a credible institutional and regulatory foundation for such a model. The revised
Federal Act on Data Protection (FADP), in force since 1 September 2023, aligns with the European Union’s
GDPR in key provisions including privacy by design and by default, expanded data subject rights, and
extraterritorial application [13, 14, 15]. It supports international data transfers through adequacy decisions
and standard contractual clauses [16], and its applicability to AI-driven processing has been confirmed
by the Swiss Federal Data Protection and Information Commissioner [17, 18]. Swiss jurisdiction benefits
from EU adequacy status and compliance with ISO 27001, allowing formal measurement of infrastructure
performance and energy use for ESG auditability [19]. Regulatory frameworks including the FADP, FinSA
and FINMA further support sovereign governance of decentralised infrastructure and cross-border compute
under legally stable conditions [20, 21].

2 Related Work

Recent studies examine the architectural separation of training, inference and orchestration across edge, fog
and cloud environments. One survey analyses AI deployment across edge–cloud infrastructures, identifying
polarisation effects and the absence of coordination mechanisms beyond data locality [22]. Another evaluates
federated learning in mobile edge networks, focusing on the resource impact of decentralised training and the
role of edge-based orchestration [23]. A more recent contribution introduces inference-aware orchestration,
separating serving from training processes and improving model placement in hierarchical systems [24].
Earlier work on fog computing outlines task distribution models between edge and cloud [25].

These contributions suggest that while federated learning addresses decentralised training and fog
computing addresses workload allocation, few approaches offer verifiable orchestration across the full infras-
tructure. FAII addresses this by explicitly decoupling training, inference and orchestration, embedding
verifiability and policy enforcement within a coordination layer designed for sovereignty and auditability.

Economic analyses explore the coexistence of fixed-price and spot markets in cloud services. Under
bounded pre-emption costs, spot pricing can outperform fixed pricing in terms of provider profit and user
welfare [26]. One mechanism proposes adaptive posted prices that respond to real-time utilisation, achieve
optimal competitive ratios and implement congestion-sensitive pricing in online allocation [27]. A related
model in the transport sector combines forward availability rights, congestion charges and real-time trading,
with structural analogies to decentralised compute markets [28]. FAII diverges by enforcing corridor-bounded
posted prices, capping availability and ESG multipliers, and replacing auction-based clearing with dispersion
constraints.

In market theory, two-sided platforms have been modelled as weighted potential games, allowing unique
Nash equilibrium selection and ensuring stability under network effects despite equilibrium multiplicity [29].
Another framework addresses asymmetric platform competition through monotone best responses, proving
equilibrium existence and uniqueness under parameter heterogeneity [30]. FAII’s feasibility-first assignment
and queue-based posted pricing implement monotone response functions under bounded multipliers and
corridor constraints, consistent with these theoretical guarantees while enforcing service-level quotas and
controlling dispersion.

Carbon-aware scheduling integrates emissions data, workload shifting and service reliability to opti-
mise deployment. One framework schedules geo-distributed web services by jointly optimising latency and
emissions, achieving up to 70% CO2 reduction without degrading performance [31]. Another introduces a
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scheduler for DAG-structured data-processing jobs that minimises carbon footprint under precedence con-
straints, reducing emissions by up to 33% [32]. A serverless scheduling approach routes functions based
on real-time grid carbon intensity, lowering emissions per invocation by approximately 13% [33]. In fixed-
network settings, a carbon-aware traffic engineering scheme uses dynamic link-cost metrics incorporating
router power use and grid intensity, achieving measurable improvements without hardware modification
[34]. FAII extends these approaches by embedding ESG signals as priced, bounded multipliers and applying
routing bias based on attestable carbon metrics, moving beyond disclosure-based reporting.

Mechanisms for verifying outsourced computation and energy claims rely on attestation, trusted execu-
tion and cryptographic proofs. One survey examines practical deployments of confidential computing with
TEEs, highlighting the role of remote attestation in detecting enclave misbehaviour in cloud systems [35].
Another reviews 37 schemes combining zero-knowledge proofs, multi-party computation and verifiable com-
putation to provide both privacy and public correctness guarantees [36]. Early systems for verifiable resource
accounting in cloud services argue that billed resource use must reflect actual consumption under declared
policies [37]. In privacy-preserving metering, protocols using TEEs and homomorphic encryption demon-
strate correctness in billing without exposing individual consumption data [38]. FAII extends these concepts
by requiring attestable, tamper-resistant metrics at runtime for routing and payment settlement, integrating
attestation directly into the orchestration layer rather than relying on post hoc audit.

EU and Swiss data-protection frameworks impose strict obligations on data residency, accountabil-
ity and controller responsibility. Public blockchains conflict with the GDPR’s right to erasure and create
ambiguity in controller identification, whereas permissioned architectures support clear accountability and
delete-by-design mechanisms [39, 40]. FAII’s orchestration layer enforces data localisation within EU or
Swiss jurisdictions, reducing exposure to extraterritorial regimes such as the US CLOUD Act [41, 40].

Under the EU Markets in Crypto-Assets Regulation (MiCAR, Reg 2023/1114), e-money tokens (EMTs)
and asset-referenced tokens (ARTs) must remain redeemable at par value, backed by segregated high-
liquidity reserves and accompanied by redemption procedures approved by a supervisory authority [42, 43].
FAII is designed to align structurally with these constraints by implementing token redemption through a
regulated issuer, maintaining reserve coverage and assigning liability through white-paper disclosures. The
model avoids interest-bearing instruments, mandates par-value redemption and provides six-month audit
cycles, without asserting formal certification status.

Carbon-credit integrity depends on provenance tracking, timestamped issuance and interoperable reg-
istries to prevent double counting and over-crediting. One global meta-analysis estimates that fewer than 16%
of issued credits correspond to verifiable emissions reductions, pointing to systemic quality failures in existing
registries [44]. Other studies examine the use of distributed-ledger technologies and standards frameworks
(e.g. ICVCM, IETA, IEEE/ISO) to enhance registry transparency through blockchain-based timestamping,
unique identifiers and audit trails [45]. One platform integrates geo-fenced sensor data with on-chain smart
contracts to verify the provenance of emissions events [46]. A cryptographic accounting model combines
encryption and authentication to support jurisdiction-agnostic emissions trading with data-integrity guar-
antees [47]. FAII builds on these approaches by linking IIoT-verified, location- and time-stamped events
to smart contracts, enforcing registry integrity, preventing double counting and enabling carbon-adjusted
settlement.

3 Contribution

Existing research treats the relevant elements in isolation, namely architecture for edge AI, market mech-
anisms for compute, carbon aware scheduling, verifiable metering and permissioned consensus. This paper
integrates these strands into a single, policy oriented infrastructure with feasibility first assignment, corridor
bounded pricing, a bounded ESG multiplier grounded in attestations, and a Nash equilibrium analysis for
heterogeneous node classes under jurisdictional constraints.

The paper introduces a decentralised AI infrastructure that unifies modular system design, tokenised
market coordination, ESG instrumentation and formal optimisation. The contribution spans five interrelated
dimensions.

The system architecture defines a federated AI cloud composed of physically distributed data centres,
anchored by a central high-density training facility and supported by a nationwide network of inference
and storage nodes. Deployment follows five classes (µ, S, M, L, XL) with standardised hardware envelopes,
energy-integration interfaces and orchestration protocols. Operators can include municipalities, coopera-
tives, academic institutions and private actors. Training and inference are functionally decoupled to support
regulatory traceability, jurisdictional control and operational scalability.

Market coordination is handled through a posted-price marketplace with a dual-token mechanism for
compute allocation and energy balancing. Corridor-bounded prices, a size-neutral availability floor and
capped multipliers for SLO performance, ESG and diversity align incentives while limiting volatility. Task
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routing follows decentralised optimisation with feasibility enforced on latency and bandwidth, and settlement
is executed via smart contracts that encode service levels and verifiable payout conditions.

ESG is a binding economic signal. Timestamped and geolocated measurements of source mix, rPUE
and energy-to-work feed a machine-verifiable ESG score used for routing bias and bounded multipliers. A
smart-contract carbon module links IIoT events to credit minting and retirement, enabling carbon-adjusted
pricing and preventing double counting through on-chain provenance.

Governance and compliance are addressed by design. The orchestrator enforces data localisation and
access policies, and the token redemption path is structured to align with Swiss and EU regimes by routing
redemption through a regulated issuer with segregated reserves and documented procedures. Claims are
kept at the “designed to align” level rather than asserting formal certification.

Formal analysis specifies node-level optimisation under latency, energy availability, ESG obligations and
token economics. Each data centre maximises a local utility function subject to verifiable constraints. Under
bounded multipliers, price corridors and queue-responsive surcharges, best responses are monotone and a
Nash equilibrium exists for the compute and energy sub-markets. This enables simulation of decentralised
dynamics and reproducible analysis across heterogeneous legal and geographic environments.

The model supports open participation and decentralised ownership. Cities, villages and individuals
can contribute certified capacity and receive revenue distributed by IIoT-based measurement and smart-
contract logic. The Swiss deployment scenario serves as a regulatory prototype, with parameters adaptable
to jurisdictions that require ESG-aware and sovereignty-preserving infrastructure.

4 System Architecture

The system architecture comprises two interdependent layers. The functional architecture defines the logical
roles and interactions of system components. The infrastructure topology specifies the physical deployment
across jurisdictions and operational environments.

4.1 Functional Architecture

The functional architecture consists of four interoperable domains: AI compute (A, CMP), decentralised data
storage (B, STR), distributed ledger infrastructure (C, DLT) and orchestration (D, ORC). These components
are functionally decoupled to ensure modularity, jurisdictional separation and operational independence
across heterogeneous regulatory contexts. The interaction and separation of these domains are illustrated in
Figure 1.

Fig. 1 Functional architecture of the Federated AI Infrastructure. The four system domains, comprising compute (A, CMP), storage
(B, STR), ledger infrastructure (C, DLT) and orchestration (D, ORC), are assigned to three distinct node types. Compute is subdivided
into centralised training (A1, TRN, Node Type I) and decentralised inference (A2, INF, Node Type III). Orchestration (D, ORC) is
implemented in Node Type II. Storage (B, STR) and ledger infrastructure (C, DLT) are realised through Node Type III. Node type roles
and configurations are detailed in Subsection 4.2.
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AI compute (A, CMP) is divided into two subdomains: centralised training (A1, TRN) and decen-
tralised inference (A2, INF). Training is concentrated in a high-density facility optimised for large-model
development, including pretraining, fine-tuning and reinforcement workflows. Inference is executed across
geographically distributed nodes in five standardised classes, configured for energy integration, regulatory
containment and latency-efficient operation. The separation of training and inference enables auditability,
reduces latency externalities and permits granular control over workload distribution. Decentralised data
storage (B, STR) is provided by nodes operating under certified capacity, location and availability con-
straints. Data are encrypted, partitioned and distributed in compliance with data residency and access
governance requirements. Logical separation from compute infrastructure prevents unauthorised inference
and enables independent auditing of storage operations. The distributed ledger infrastructure (C, DLT)
maintains verifiable contract state, token settlement and coordination logic. It records routing instructions,
ESG scoring metrics and service-level compliance under formal consensus conditions. Smart contracts exe-
cute within this layer to isolate enforcement, reduce coordination load and support sovereign governance
under multi-jurisdictional constraints. System orchestration (D, ORC) is implemented by a verifiable control
layer interfacing with compute, storage and ledger domains. It manages task scheduling, node registration,
resource discovery and fault isolation. This layer enforces protocol-level consistency across decentralised
operations and preserves coherence, auditability and regulatory traceability under functional separation.

The interaction between these domains is formalised in Equation (1).

F : (A2, B,C)
D−→ O (1)

s.t. A = A1 ∪A2, A1 ∩A2 = ∅, D ⊥ (A1)

The function F maps the operational domains, comprising decentralised inference (A2), storage (B)
and ledger infrastructure (C), into a system-wide operational state O, governed by the orchestration layer
(D). Orchestration functions as a verifiable control interface that enforces protocol-level consistency and
ensures auditability across otherwise decoupled domains. Centralised training (A1) is excluded from this
coordination logic, reflecting its independent role in large-model development. The expression A = A1∪A2,
with A1 ∩ A2 = ∅, formalises the architectural separation of training and inference. The orthogonality
condition D ⊥ (A1) states that orchestration operates independently of the training facility.

4.2 Infrastructure Topology

We propose a physically distributed Federated AI Infrastructure, structured as a jurisdictionally bounded
system of interoperable node types. The topology reflects regulatory separation, functional independence
and operational scalability across national infrastructure. The model is designed for sovereign deployment
and supports integration with decentralised AI workloads, contract-based coordination and ESG-auditable
resource governance. The relationship between functional domains and node types is shown in Figure 1.

The infrastructure consists of three node types, each assigned distinct roles within the system architec-
ture. Node Type I corresponds to the centralised AI training facility (A1, TRN), providing the high-density
compute required for pretraining and model refinement. Node Type II implements the orchestration layer
(D, ORC), responsible for coordination, routing and contract logic. Both types are centralised components
and are required in every instance of the national system. They form the operational core of the architecture
and are typically deployed within controlled, high-compliance environments.

The distributed ledger is implemented as a permissioned consortium DAG (Directed Acyclic Graph)
using a leaderless asynchronous Byzantine Fault Tolerant (aBFT) consensus protocol. Master DAG nodes,
responsible for transaction finality, ordering and cross-domain validation, are integrated into Type II.
Execution-level DAG nodes, which handle contract execution and local validation, are distributed across
Type III infrastructure.

Node Type III comprises all decentralised infrastructure elements, including inference nodes (A2, INF),
data storage (B, STR) and operational ledger components (C, DLT). These nodes vary in physical capac-
ity and are deployed in five standardised sizes: micro (µ), small (S), medium (M), large (L) and extra-large
(XL). While Types I and II are fixed in number and function, Type III nodes are variable in quantity and
configuration. Their distribution depends on stakeholder investment decisions, local energy availability, regu-
latory incentives and ESG objectives. This modularity enables each jurisdiction to calibrate its infrastructure
layout to national priorities while maintaining interoperability and functional symmetry across the system.

DAG-based consensus protocols support efficient, leaderless asynchronous Byzantine fault tolerance with
high throughput and fairness. One system builds on DAG-Rider and Narwhal/Tusk, combining a communica-
tion DAG with synchronous fast-path optimisation to achieve atomic broadcast without additional consensus
rounds [48]. A recent survey classifies DAG-based distributed ledger technologies into availability-focused
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and consistency-focused designs, analysing trade-offs in finality, fault tolerance, and fairness [49]. Another
framework implements permissioned asynchronous DAG consensus with logical time ordering and leaderless
practical BFT across consortium participants [50]. FAII adopts a permissioned consortium DAG with lead-
erless asynchronous BFT and integrates orchestration nodes to enforce finality, sustaining throughput and
fault resilience under partial synchrony.

The system-wide infrastructure can be formalised as a tuple over node types and domain assignments,
as shown in Equation (2).

I =
(
NI,NII,NIII

)
(2)

s.t. NI 7→ A1,

NII 7→ D, and master nodes of C,

NIII 7→ {A2, B, C \ C∗}, C∗ ⊂ C.

The infrastructure is formalised as the tuple I =
(
NI,NII,NIII

)
, where NI, NII and NIII denote the

sets of deployed nodes of Type I, II and III, respectively. Each set is mapped to its associated functional
domain. Type I nodes implement centralised AI training and are mapped to the subdomain A1. Type II
nodes implement orchestration D and host the master nodes C∗ ⊂ C of the distributed ledger infrastructure.
Type III nodes support decentralised inference A2, decentralised data storage B, and the remaining DAG
infrastructure C \ C∗, where C \ C∗ denotes the execution-level ledger nodes not assigned to Type II. This
formalism captures the infrastructure layout and domain separation in a system-wide view.

While Node Types I and II are deployed as single instances within each national deployment of the
Federated AI Infrastructure, their physical design must support scalable capacity. This includes vertical
extension through modular upgrades and, where required, horizontal replication at the site level. During
the planning and initial deployment phase, their sizing must reflect projected system traction, expected
inference and coordination workloads, and jurisdiction-specific constraints on sustainable and non-renewable
grid energy, commonly referred to as grey energy. Both node types are subject to an upper capacity bound
determined by the maximum allocatable energy at the site, in order to prevent grid overload, maintain local
infrastructure stability and support ESG-aligned deployment strategies.

In this context, capacity denotes the aggregate technical potential of a node to perform its assigned func-
tion over a defined interval under nominal operating conditions. For Node Type I, this refers to sustained
floating-point throughput (FLOPS) or training tokens per day, metrics standard in high-performance com-
puting capacity planning [51, 52]. For Node Type II, capacity corresponds to orchestration layer throughput,
expressed as operations per second or validated control-state transitions per second, consistent with bench-
marks used in orchestration and container-management frameworks [53, 54]. In both cases, capacity is a
function of hardware configuration, software stack efficiency, power provisioning, thermal design and compli-
ance with operational duty cycles. It forms the basis for scaling decisions, energy budgeting and service-level
estimation in infrastructure planning [55, 51].

The corresponding sizing constraints for Node Types I and II are formalised in Equations (3) and (4).

Type I capacity: CTRN ∈ [CTRN
min , CTRN

max (ETRN
avail )] (3)

Type II capacity: CORC ∈ [CORC
min , CORC

max (EORC
avail )] (4)

Here, CTRN and CORC denote the installed capacities of the central training facility (Type I) and orches-
tration node (Type II), respectively. Each capacity must exceed a minimum functional threshold C ·

min
while remaining within a jurisdiction-specific upper bound C ·

max(E
·
avail), determined by the permanently

allocatable energy. This includes both renewable sources and transitional grey energy earmarked for AI
infrastructure. These constraints ensure compliance with energy regulation and prevent destabilisation of
local supply during deployment.

The total installed capacity of Type III infrastructure is determined by the number and class of deployed
decentralised nodes. Each node belongs to one of five standardised classes: micro, small (S), medium (M),
large (L) and extra-large (XL). Node capacity is fixed per class. Stakeholders scale the system by replicating
nodes within each class. The corresponding sizing constraint and class-level definitions are formalised in
Equations (5) and (6).

Type III capacity: CIII ∈ [CIII
min, C

III
max(E

III
avail)] (5)

Class capacities: Cµ = nµ · cµ, CS = nS · cS, CM = nM · cM,

CL = nL · cL, CXL = nXL · cXL, CIII = Cµ + CS + CM + CL + CXL

(6)
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Here, CIII denotes the total installed capacity of Type III infrastructure. The lower bound CIII
min

corresponds to minimum viable operation. The upper bound CIII
max(E

III
avail) reflects the maximum permit-

ted capacity under ESG-aligned energy allocation. The class-level components are defined by fixed node
capacities ci and the number of deployed nodes ni, for each class i ∈ {µ, S,M,L,XL}.

Unlike Node Types I and II, which scale through capacity extension within a fixed node instance, Type
III infrastructure scales horizontally by replicating nodes across the defined classes. Each Type III node
operates at a fixed capacity determined by its class and is not internally extendable.

When additional capacity is required, stakeholders may provision new nodes in any of the five stan-
dardised sizes. This scaling logic preserves operational granularity, simplifies energy budgeting and supports
incremental expansion strategies tailored to local constraints and stakeholder resources.

Each Node Type III instance integrates all operational subsystems required for decentralised participa-
tion, including AI inference execution (A2, INF), certified data storage (B, STR) and distributed ledger
operations (C, DLT). This composite design ensures that each deployed node can independently execute
inference tasks, host partitioned and encrypted data, and validate or execute smart contracts within
the permissioned DAG infrastructure. Embedding all three functional domains in a unified physical unit
enables modular deployment, localised resilience and protocol-level interoperability across geographically
distributed infrastructure.

4.2.1 Node Class Functions and Size Differentiation

The current model defines Node Type III in five physical sizes: micro (µ), small (S), medium (M), large
(L) and extra-large (XL). Each node class integrates the full operational stack—decentralised inference (A2,
INF), data storage (B, STR) and ledger functions (C, DLT)—and is in principle eligible to perform any
system task. This raises the question of whether physical node size should imply functional differentiation
or whether all nodes should retain identical eligibility within orchestration logic.

Two configurations are possible. In a uniform model, all classes implement the same functional capa-
bilities. Task allocation remains size-agnostic, with orchestration decisions based solely on availability and
compliance. This approach simplifies protocol logic and promotes egalitarian participation but may pro-
duce suboptimal outcomes, particularly if small nodes are assigned compute-intensive inference or contract
execution workloads.

A differentiated model assigns functional focus by node size. Micro and small nodes may prioritise low-
latency edge inference and local storage, while L and XL nodes could be allocated to compute-intensive
inference or high-throughput ledger validation. This configuration enables performance optimisation, more
efficient energy allocation and structured incentives. Stakeholders could select investment tiers based on
workload contribution and monetisation logic.

Both models present viable trade-offs. Uniformity maximises system redundancy and simplifies gov-
ernance. Differentiation introduces economic signalling, strategic investment logic and supports workload
specialisation, potentially improving efficiency and stakeholder returns. The architectural choice affects
task distribution as well as the convergence properties of decentralised coordination models such as Nash
equilibrium under constrained resources.

To formalise the economic reasoning behind Type III participation and orchestration in the Federated AI
Infrastructure, we define a capacity allocation and service model. The objective is to characterise investor
class selection, orchestration-induced workload distribution, and the resulting equilibrium under energy,
reliability and compliance constraints.

Let the set of Type III classes be C = {µ, S,M,L,XL}. For each class i ∈ C, let ni ∈ N denote the number
of deployed nodes, ci > 0 the fixed per-node capacity, and Σi = ni σi the effective service capacity, where
σi > 0 is the verified per-node service rate. System tasks arrive at rate λ > 0. The orchestration layer selects
a routing share ϕi ∈ [0, 1] with

∑
i∈C ϕi = 1. Define class utilisation as

ui =
ϕi λ

Σi
. (7)

Service-level success is given by si = si(ui, τi, ri) ∈ [0, 1], where τi and ri denote latency and reliability
parameters, respectively. The function si(·) is non-increasing in ui and non-decreasing in τi and ri. The
verified work performed by class i is

Vi = ϕi λ si(ui, τi, ri) . (8)
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Protocol rewards are paid per unit of verified work at base rate p > 0 with optional class multiplier

mi ≥ 0. Energy consumption for class i is decomposed as ei = eidlei +edyni (Vi), where e
dyn
i (·) is non decreasing.

Let κe > 0 denote the effective energy price per unit at site power usage effectiveness. Let oi ≥ 0 be non
energy operating costs, κo > 0 the cost conversion factor, δ ≥ 0 the amortisation rate, and capexi > 0 the
class specific investment. Penalties ℓi = ℓi(ui) ≥ 0 apply for SLO violations or consensus faults and are non
decreasing in ui.

Expected net return for operating a node of class i is

Ri = pmi Vi − κe ei − κo oi − φ ℓi − δ capexi , (9)

where φ > 0 scales penalties. Risk sensitive investors with absolute risk parameter ρ ≥ 0 maximise
mean–variance utility

Ui = E[Ri] − ρVar(Ri) . (10)

Each node faces site constraints for energy, bandwidth, availability, certification and carbon

ei ≤ Eloc, bi ≤ Bloc, ai ≥ amin, θi ∈ Θcert, CO2i ≤ Γcap . (11)

Tasks may require minimum hardware features. Let χi ∈ {0, 1} denote eligibility for a given task class, with
χi = 1 if class i satisfies the requirement. The verified work in (8) is then understood conditional on χi = 1.

Given orchestration policy ϕ = (ϕi)i∈C , rewards (p,mi) and deployed supply n = (ni)i∈C , a profit
maximising, risk sensitive stakeholder chooses a class i ∈ C to maximise

max
i∈C

Ui s.t. (7)–(11) . (12)

Risk neutral behaviour is obtained by setting ρ = 0 in (10).
The orchestration layer sets ϕ and pricing instruments (p,mi) to achieve policy objectives subject to

feasibility and market clearing. Let welfare be the verified work net of energy and externalities, with optional
diversity regularisation to avoid concentration. For a weight η ≥ 0 on concentration and convex regulariser
Ψ(ϕ), define

max
ϕ,(p,mi)

∑
i∈C

(
pmi Vi − κe ei

)
︸ ︷︷ ︸

net verified work

− ηΨ(ϕ) (13)

s.t.
∑
i∈C

ϕi = 1, ϕi ≥ 0, (7)–(11), eligibility χi = 1 when required . (14)

A common choice is Ψ(ϕ) =
∑

i ϕ
2
i , which penalises concentration and preserves decentralisation.

Routing shares interact with congestion through (7). For a given i, assume si(ui, τi, ri) is continuously
differentiable and strictly decreasing in ui on [0, 1). The marginal verified work with respect to ϕi is

∂Vi

∂ϕi
= λ si(ui, τi, ri) + ϕi λ

∂si
∂ui

∂ui
∂ϕi

= λ si + ϕi λ
∂si
∂ui

λ

Σi
, (15)

which is strictly less than λ si when ∂si/∂ui < 0. Congestion reduces marginal gains from additional routing
to saturated classes.

An equilibrium is a tuple (ϕ⋆, (p⋆,m⋆
i ), n

⋆) such that, given (ϕ⋆, (p⋆,m⋆
i )), each stakeholder’s class choice

solves (12) and leads to the supply vector n⋆. Given n⋆, the orchestration problem (14) yields ϕ⋆, (p⋆,m⋆
i ).

Free entry or participation conditions can be imposed as Ui ≥ 0 for active classes and Ui ≤ 0 otherwise.
Return equalisation per unit of capital or energy under size neutral orchestration requires stringent

assumptions. Let R̄i denote return per unit of capital Ki or per unit of energy Ei. Suppose mi = 1 for all

i, si(·) ≡ s̄ independent of i, edyni (Vi) = αVi with a common α > 0, oi and capexi linear in capacity with
common coefficients, and no discrete eligibility constraints. Then

R̄i =
Ri

Ki
or

Ri

Ei
= constant across i ⇐⇒ ϕi λ

Σi
= constant across i , (16)
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which requires equal utilisation ui across classes by (7). Any deviation from linear costs, identical success
probabilities or equal utilisation breaks equalisation. Scale economies in capex, class specific PUE, eligibility
thresholds and non linear penalties ℓi(ui) induce persistent wedges in R̄i.

The reward sensitivity to energy price satisfies

∂Ri

∂κe
= − ei < 0 ,

∂Ri

∂p
= mi Vi > 0 . (17)

Congestion reduces marginal returns through ∂Ri/∂ϕi = pmi ∂Vi/∂ϕi−κe ∂ei/∂ϕi−φ∂ℓi/∂ϕi, with ∂Vi/∂ϕi

given by (15). Risk aversion lowers class attractiveness as

∂Ui

∂ρ
= −Var(Ri) ≤ 0 , (18)

which shifts participation away from classes with volatile rewards or energy costs.
Size neutral pricing with mi ≡ 1 and η = 0 in (14) can still generate effective size bias when si(·), PUEi or

capexi exhibit class dependent scale effects. To internalise policy goals for decentralisation, carbon or latency,
the orchestration layer can implement class multipliers mi = mi(ESGi, τi, ri) and a convex concentration
term with η > 0. The first order condition for ϕi under an interior solution satisfies

pmi
∂Vi

∂ϕi
− κe

∂ei
∂ϕi

− φ
∂ℓi
∂ϕi

− η
∂Ψ

∂ϕi
= ν , (19)

with ν the Lagrange multiplier on
∑

i ϕi = 1. Class specific mi should be applied only where efficiency
gains from scale are demonstrated by higher ∂Vi/∂ϕi net of externalities. Concentration penalties mitigate
centralisation without forbidding specialisation.

Uniform eligibility assigns χi = 1 for all classes and tasks. Differentiated eligibility restricts χi ∈ {0, 1}
by task type to allocate compute intensive inference or high throughput validation to larger classes, while
preserving edge inference and storage preference for smaller classes.

Let T be the set of task types, and let ϕi,t be routing to class i for task t ∈ T. Under differentiation, the fea-
sibility set is reduced by ϕi,t = 0 when χi,t = 0. The verified work becomes Vi =

∑
t∈T ϕi,t λt si,t(ui,t, τi,t, ri,t),

with class–task specific success and utilisation ui,t = ϕi,tλt/Σi. Differentiation can raise total welfare in
(14) when the induced increase in

∑
i,t pmi,t ϕi,tλtsi,t exceeds losses from reduced redundancy and increased

entry barriers.
Investor behaviour is captured by (12) with return (9) and risk (10). Orchestration selects routing and

prices via (14), with congestion and SLO effects entering through (7)–(15). Return equalisation across
classes requires equal utilisation and linear, class agnostic technologies as in (16). Energy prices, risk and
congestion drive comparative statics in (17)–(18). Policy instruments mi and Ψ(ϕ) implement efficiency and
decentralisation, with optimal routing characterised by (19).

In plain terms, the system sends work to different node sizes and pays for verified results. Equal returns
across sizes would require identical success rates, linear costs and equal utilisation, which seldom holds.
Larger nodes process heavy inference and ledger tasks more efficiently and often have better power efficiency,
yet they face site energy limits and greater exposure to penalties if they fail strict service targets. Smaller
nodes sit closer to users, respond quickly and store local data, but their total earning potential is capped
unless the coordinator reserves edge tasks or sets size neutral prices.

When energy becomes expensive or rewards fluctuate, risk averse investors gravitate to smaller, more
predictable roles. Investors with access to low cost renewable energy, strong bandwidth and compliance
readiness prefer large or extra large nodes because scale improves net returns after energy, operations and
amortised capital.

Expected behaviour without policy is a drift toward concentration in larger classes for compute and
validation, with a persistent layer of small nodes at the edge to meet latency and locality needs.

With policy multipliers tied to ESG, latency targets and concentration penalties, the system converges
to a mixed fleet with sustained participation across classes. Stakeholders select the class that maximises
expected net reward after energy, operating costs and penalties under local constraints, which commonly
favours large or extra large nodes for well capitalised operators and small or medium nodes for capital
constrained or edge focused participants.
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4.3 Pricing and eligibility proposal

A uniform flat rate by size, capacity and online time creates adverse selection and underprovision of high
performance roles. A fully performance driven schedule risks centralisation in large classes and weak edge
participation. A hybrid mechanism balances efficiency with decentralisation and ESG policy.

Let node j in class i ∈ {µ, S,M,L,XL} process task types t ∈ T. Define availability aij ∈ [0, 1], verified
work Vij,t, energy eij , non energy operating costs oij , and penalties ℓij . Let ci denote the fixed per node
capacity unit. The payout decomposes into a size neutral availability floor, a performance component with
policy multipliers, and deductions.

P base
ij = p0 aij ci, (20)

P perf
ij =

∑
t∈T

pt m
ESG
i mlat

i,t mdiv
i Vij,t, (21)

Φij = κe eij + κo oij + φ ℓij , (22)

Πij = P base
ij + P perf

ij − Φij . (23)

The availability floor P base
ij pays for measured uptime and capacity readiness without favouring size

beyond installed capacity. The performance term P perf
ij remunerates verified work at task specific posted

prices pt, adjusted by three transparent multipliers. The ESG multiplier mESG
i ∈ [1,mESG] increases with the

renewable share and certified carbon intensity of class i. The latency multiplier mlat
i,t ∈ [1,mlat] increases with

SLO tightness and measured success for task type t. The diversity multiplier mdiv
i counteracts concentration

by reducing rewards as a class dominates the workload. Let si denote the systemwide share of verified work
executed by class i, and let s̄ ∈ (0, 1) be a target upper bound for any single class. A simple convex form is

mdiv
i = 1− η

(
si − s̄

)
+
, (x)+ := max{x, 0}, η ∈ [0, 1). (24)

Deductions Φij internalise energy, operations and penalties for SLO or consensus faults.
Task routing remains size agnostic by default but preserves edge capacity for latency sensitive services.

For a subset Tedge ⊆ T and reserve parameter αt ∈ (0, 1],∑
i∈{µ,S}

ϕi,t ≥ αt for all t ∈ Tedge, (25)

where ϕi,t are orchestration routing shares. Posted prices clear congestion through a transparent surcharge
tied to normalised queue length qt ∈ [0,∞),

pt = p0t
(
1 + γt qt

)
, γt ≥ 0, (26)

which increases remuneration only where scarcity is observed and verified.
The proposal keeps class specific multipliers absent unless justified by measurable policy externalities.

Equation (20) guarantees a predictable floor for all investors. Equations (21)–(26) align payouts with ver-
ifiable performance, ESG and decentralisation targets, while (25) preserves small class viability for edge
workloads.

A flat uniform scheme is simple yet inefficient and prone to misallocation under heterogeneous costs and
SLO constraints. A hybrid schedule with a size neutral availability floor and modest, measurable multipliers
for ESG, latency and anti concentration delivers higher welfare and maintains diversity without engineering
large ROI gaps. Expected behaviour under this design is a stable mixed fleet, with large and extra large
nodes specialising in high throughput roles when they demonstrate superior verified work net of energy and
penalties, and micro to medium nodes sustaining edge inference and local storage through the reserve and
latency multiplier. Investors with cheap renewable energy and compliance readiness prefer larger classes.
Risk averse or bandwidth constrained stakeholders prefer smaller classes, supported by the availability floor
and edge routing guarantees.
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4.4 Tiered token model and workload linked rewards

All Node Type III operators are remunerated through a unified token system. Tokens function as the
invariant on chain unit of account and settlement measure across the system. Where fiat settlement is
required, stakeholders convert tokens into a fiat redeemable stablecoin issued by a regulated entity under
FINMA supervision or the competent national authority in the deployment jurisdiction, for example under
an e money or payment institution regime. Conversion and redemption occur via licensed exchanges or
settlement partners with full KYC and AML compliance and adherence to the travel rule. The regulated
issuer maintains segregated one to one reserves with periodic attestations, and redemption is at par subject
to fees. Protocol level token issuance, conversion and redemption are segregated duties: rewards are minted
on chain to operators, while the stablecoin is issued off chain against reserves by the regulated issuer. This
design preserves compliance readiness, auditability and cross node interoperability without prescribing a
single jurisdictional monetisation pathway.

Let the set of execution tiers be T = {1, 2, 3, 4}. Each tier t ∈ T represents increasing compute intensity,
energy use and expected duration and is assigned a tier factor θt with 1 = θ1 < θ2 < θ3 < θ4. Let operator j
in class i ∈ {µ,S,M,L,XL} process verified work Vij,t for tier t. Let aij ∈ [0, 1] denote measured availability,
ci > 0 the fixed per node capacity unit, eij energy use, oij non energy operating costs and ℓij penalties. Let
p > 0 be the base token rate per unit of verified work and p0 > 0 the availability rate.

Token payouts decompose into a size neutral availability floor and a performance component with policy
multipliers, net of deductions

P base
ij = p0 aij ci, P perf

ij =
∑
t∈T

p θtm
ESG
ij mSLO

ij,t mDIV
i Vij,t, (27)

Φij = κe eij + κo oij + φ ℓij , Πij = P base
ij + P perf

ij − Φij . (28)

The SLO multiplier mSLO
ij,t rewards reliable, low latency execution and scales with success relative to a

tier target s̄t

mSLO
ij,t =

(
sij,t
s̄t

)αt

, αt ≥ 1, 0 ≤ mSLO
ij,t ≤ mSLO,t, (29)

where sij,t ∈ [0, 1] is the verified SLO success for operator j at tier t. The ESG multiplier mESG
ij internalises

carbon and renewable share

mESG
ij = 1 + ξ g(REij − RE), 0 ≤ ξ < 1, 1 ≤ mESG

ij ≤ mESG, (30)

with g(·) increasing and bounded, REij the certified renewable share and RE a baseline. The diversity
multiplier reduces rewards when a single class dominates verified work share

mDIV
i = 1 − η

(
si − s̄

)
+
, si =

∑
j,t Vij,t∑

k,j,t Vkj,t
, 0 ≤ η < 1, (31)

where s̄ ∈ (0, 1) is the target upper bound on class share and (x)+ := max{x, 0}.
Tier pricing is posted and congestion aware. Let qt ≥ 0 be a normalised queue for tier t

θt = θ0t
(
1 + γt qt

)
, γt ≥ 0. (32)

Caps and dispersion constraints prevent reward concentration and misrouting

0 ≤ Πij ≤ Ei, si ≤ s̄,
wij,t

Wt
≤ βt < 1,

∑
j

⊮{wij,t > 0} ≥ dt, (33)

where wij,t is the workload share of task massWt sent to operator j at tier t, βt is a per task allocation cap and
dt enforces dispersion across at least dt distinct operators at tier t. Energy and performance data (eij , sij,t)
are verified by secure metering and on chain attestations; penalties ℓij include service-level objectives (SLO)
misses and consensus faults.

A flat, class based schedule is obtained as a special case by setting mESG
ij = mSLO

ij,t = mDIV
i = 1, γt = 0

and dropping (33). The hybrid design in (27)–(33) remains class neutral at the base layer while aligning
payouts with verifiable performance, energy externalities and decentralisation.
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Expected behaviour under the hybrid design is a mixed fleet. Large and extra large nodes specialise in
higher tiers when their verified work net of energy and penalties is superior. Micro to medium nodes sustain
edge and mid tier tasks, supported by availability floors, dispersion and diversity incentives. Investors with
low cost renewable energy and compliance readiness tend to prefer larger classes. Risk averse or bandwidth
constrained stakeholders prefer smaller classes with stable availability income and low variance SLO pro-
files. A purely flat scheme simplifies accounting yet misallocates work under heterogeneous costs and SLO
constraints, while the hybrid preserves simplicity at the base level and uses bounded multipliers and caps
to prevent concentration and reward distortion.

Table 1 provides an illustrative overview of typical workloads, indicative SLO, and example token payouts
per validated unit of work. DAG operations are accessible to all Type III nodes. Micro nodes prioritise
low-latency edge inference and local storage, while XL nodes focus on high-throughput inference and ledger
validation, subject to energy and bandwidth availability. This proposal serves as a baseline for refinement
in real deployments and future research using empirical workload traces and energy pricing data.

Task category Typical example Indicative SLO target Tier Token example

Edge inference Real-time content filtering near
users

Latency ≤ 50 ms, availability
99.0%

1 1p per unit

Local storage shard Hosting encrypted data chunks
with proof of availability

Retrieval ≤ 150 ms, availabil-
ity 99.5%

2 2p per unit

DAG validation and rout-
ing

Ordering, finality checks, light
contract execution

Throughput 5–20 tx/s, avail-
ability 99.9%

2 2p per unit

Interactive inference Personalised inference for appli-
cations with user feedback

Latency ≤ 200 ms, availability
99.5%

3 3p per unit

Batch inference Large model batch jobs, offline
scoring, model distillation

Completion within window,
throughput maximised, avail-
ability 99.5%

4 4p per unit

High throughput ledger
work

Execution-heavy contract vali-
dation, re-sharding, audits

Throughput > 50 tx/s, avail-
ability 99.9%

4 4p per unit

Table 1 Illustrative task categories, associated service targets, and token reward tiers within the proposed incentive model.

Note: SLO (Service Level Objective) refers to a measurable performance target required for task validation and reward
eligibility. Typical SLOs include latency, throughput and availability, as formally specified in operator protocols.

Typical node roles All Type III nodes participate in DAG operations. Micro and Small prioritise edge infer-
ence and local storage with steady DAG participation. Medium balances interactive inference and storage
with continuous DAG work. Large and XL specialise in batch inference and high throughput DAG valida-
tion subject to site energy and bandwidth. Notation p denotes the base token unit. Figures are illustrative
and subject to calibration in production.

The token multipliers used in Table 1 are straight and equidistant (1p, 2p, 3p, 4p), applied here for demon-
strative purposes. This linear schedule is a simplifying placeholder and does not fully reflect non-linear
costs, congestion effects, SLO risk or differing PUE (Power Usage Effectiveness, the ratio of total facility
energy to energy used for compute) across node classes. Variations in PUE impact the real cost of verified
work and must be reflected in the reward function. A fair and incentive-compatible design will generally
require non-equidistant multipliers derived from observed performance and market conditions, for example
(1p, 2.221p, 3.476p, 4.333p) once calibrated to verified work, energy intensity and latency success.

Initial deployment may exhibit imbalance as demand, hardware efficiency and orchestration policy co
evolve. GPU performance per watt, network costs and SLO penalties will shift relative economics over time,
which implies that fixed linear multipliers will misprice tasks and bias routing. A data driven procedure that
estimates multipliers from telemetry and queue observations improves fairness under the proposed Nash
equilibrium, since prices then internalise congestion and risk rather than rewarding size alone.

We propose live testing and periodic optimisation while the system is active. Tier multipliers are updated
on a published schedule from simulation and real workload traces, subject to caps on change to preserve
stability, for example a maximum relative adjustment per period. Updates are proposed on chain, reviewed
by the consortium and adopted by vote, and the new schedule is published with methodology and valida-
tion artefacts. This governance process mirrors an index calculation, ensures transparency and allows the
multiplier curve to converge toward efficiency as evidence accumulates.
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4.5 Network equilibrium and coordination constraints

Beyond computational, monetary and energy-layer equilibria, the operational feasibility of a federated AI
infrastructure depends on network-level constraints governing routing, latency and connectivity. A task may
be economically and energetically optimal on a given node but must also be physically deliverable within
service-level thresholds. This introduces a fourth equilibrium dimension: network equilibrium, defined by
the topology, bandwidth and latency properties of the physical and virtual network interconnecting all
participating nodes. This layer captures the real-time viability of inference, storage and ledger operations
under dynamic routing conditions. It constrains the token model indirectly via node selection and affects
ESG compliance when rerouting increases energy externalities. Network equilibrium must be integrated into
orchestration logic to prevent systemic misallocation, geographic underutilisation and latency violations.

Security and governance equilibria, addressing adversarial robustness and inter-jurisdictional coordina-
tion, are acknowledged for completeness but fall outside the operational scope of this paper. These aspects
are reserved for future work.

The design of the Federated AI Infrastructure requires coordination among heterogeneous, self-interested
stakeholders. Each actor, including node operators, energy providers and regulatory entities, optimises its
own objective function subject to common protocols, physical constraints and market interactions. These
actors operate independently and may act strategically, especially in settings where partial compliance,
opportunistic reporting or selective engagement offer local benefit. Stability cannot be assumed ex ante
but must emerge from a structure in which individual incentives are aligned with collective feasibility. This
condition is modelled through the classical Nash equilibrium, which characterises a configuration in which
no participant can unilaterally improve their outcome given the strategies of others [56]. Let P be the set
of participants, each with strategy set Si and utility function Ui. A strategy profile s∗ = (s∗1, s

∗
2, . . . , s

∗
n) ∈

S1 × S2 × · · · × Sn constitutes a Nash equilibrium if and only if

Ui(s
∗
i , s

∗
−i) ≥ Ui(si, s

∗
−i) ∀si ∈ Si, ∀i ∈ P (34)

where s∗−i denotes the equilibrium strategies of all other participants.
This equilibrium structure reflects the decentralised nature of the system. It requires no central enforce-

ment and is stable under rational behaviour, provided that system parameters remain fixed. The use of
Nash equilibrium in this context captures the strategic logic of federated infrastructure governance, where
participants are individually rational, partially aligned, and jointly constrained. The next section identifies
four operational domains in which such equilibria structure coordination outcomes.

4.5.1 Computational equilibrium

The computational layer of the Federated AI Infrastructure requires decentralised workload alignment under
rational utility maximisation. Orchestration assigns inference tasks based on availability and declared capac-
ity. Each node operator pursues local optimisation, subject to energy cost, reliability parameters and physical
limits. A computational equilibrium exists when no node benefits from unilateral workload reassignment,
given the network-wide allocation.

Let N denote the set of Type III inference nodes. Each node i ∈ N is allocated a workload wi ∈ [0, Ci],
where Ci > 0 is its installed processing capacity. Let ei > 0 be its unit energy cost. The local utility function
is given by Ui(wi;Ci, ei). The equilibrium condition is defined as

Ui(w
∗
i ;Ci, ei) ≥ Ui(wi;Ci, ei) ∀wi ∈ [0, Ci], ∀i ∈ N (35)

where w∗
i is the equilibrium assignment. No node has an incentive to deviate from w∗

i unless system
parameters change.

The notation is as follows. N is the inference node set. wi is the workload assigned to node i, Ci its
installed capacity, ei its energy cost. Ui denotes the node’s local utility, incorporating task value, cost and
performance trade-offs.

An example illustrates this principle: consider three nodes sharing a total workload of 300 inference units.
Node A, characterised by low energy cost and high capacity, processes 120 units. Node B, with moderate
cost, handles 100 units. Node C, with higher cost and lower capacity, receives 80 units. If none of these
nodes can improve their utility by unilaterally adjusting their workload, the system is in equilibrium.

4.5.2 Energy equilibrium

The energy layer of the Federated AI Infrastructure governs the allocation of computational tasks to nodes
operating under heterogeneous power sources. Each node operator seeks to maximise energy-adjusted utility,
balancing throughput, cost and ESG compliance. Orchestration enforces declared energy source data, smart
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contract constraints and external signals such as weather, which affect renewable availability. An energy
equilibrium exists when no node can improve its energy-normalised utility by altering its declared sourcing,
consumption or routing strategy, given the state of the network.

Let N denote the set of active nodes. For each node i ∈ N , the energy budget is Ei = Egreen
i +Egrey

i , with
green share ρi = Egreen

i /Ei ∈ [0, 1]. Let θi denote the regulatory penalty weight, which increases as the green
share decreases or as ESG constraints are violated. Let κi be the carbon credit offset applied to the node,
derived from verified market data or on-chain ESG scoring. Node utility is given by Ui(Ei, ρi, θi, κi), where
orchestration adjusts θi and κi in real time based on weather-linked green availability and contract-based
routing filters. The equilibrium condition is defined as

Ui(E
∗
i , ρ

∗
i , θi, κi) ≥ Ui(Ei, ρi, θi, κi) ∀Ei, ρi, ∀i ∈ N (36)

where (E∗
i , ρ

∗
i ) is the equilibrium energy allocation and source mix. No node can improve its adjusted utility

by changing its energy composition or task acceptance policy under current routing constraints.
The notation is as follows. Ei is the total energy available to node i, ρi its green energy ratio, θi its

regulatory penalty parameter, and κi its carbon credit offset. Ui reflects the net utility after cost, com-
pliance and reward normalisation. Smart contracts bound routing decisions and ESG eligibility through
dynamic thresholds. Weather and grid signals influence green availability, adjusting orchestration priorities
accordingly.

As illustration, consider Node A with 120 energy units, 75 percent green, and a favourable carbon offset.
Node B has 100 units with lower green ratio and no credits. Node C relies on grey energy but is in a region
with wind surplus expected in the next 24 hours. If orchestration anticipates that Node C will transition to
green and thus allocates tasks preemptively to benefit from ESG incentives, and no node can improve its
standing by altering declared energy composition or timing, then the system is in equilibrium.

4.5.3 Monetary equilibrium

The monetary layer of the Federated AI Infrastructure governs token-based compensation for decentralised
task execution. Node operators act as profit-seeking stakeholders, maximising token earnings relative to
operational costs, task difficulty and reliability constraints. Orchestration routes tasks based on verified
service-level delivery and adjusts token streams in response to decentralisation targets, ESG compliance and
observed performance. A monetary equilibrium exists when no node operator can improve net token yield
by unilaterally modifying service strategy, node class or declared availability under the prevailing reward
structure.

Let T denote the token reward function, defined over task tier τj ∈ {1, 2, 3, 4}, performance score
σi ∈ [0, 1], and node class multiplier ϕi ∈ R+. Let Ci be the cost per unit of verified work at node i,
incorporating energy consumption, hardware depreciation and availability penalties. Net utility from task
tier τj is expressed as

U token
i = T (τj , σi, ϕi)− Ci (37)

Monetary equilibrium holds when

U token
i (s∗i ) ≥ U token

i (si) ∀si ∈ Si, ∀i ∈ N (38)

where si represents the declared service strategy of node i, including class, tier preference and availability
profile.

The variable τj defines the assigned task tier. The parameter σi captures the verified performance level
of node i. The factor ϕi reflects class-specific multipliers based on ESG alignment or network decentralisa-
tion policy. The term Ci denotes the effective unit cost of verified task execution. The reward function T
aggregates tier, performance and class effects. The strategy vector si encodes the node’s declared operational
stance.

Consider the case of Node A operating in the XL class with high renewable availability and 98 percent
uptime. Node B operates in the small class with a mixed energy portfolio and 91 percent availability.
Both receive tier three inference tasks. Node A receives higher token rewards due to class and performance
advantages, but incurs higher cost. Node B remains viable if it sustains minimal service standards and
maintains low operational cost. If neither can improve net return by switching class, availability or task
focus, the system is in equilibrium.
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The monetary equilibrium aligns self-interested optimisation with verifiable contribution. It supports
ESG-weighted differentiation and decentralised participation without introducing systemic reward asymme-
tries. A robust token model calibrated to performance and energy integrity ensures the financial viability of
heterogeneous actors under common orchestration.

4.5.4 Network equilibrium

Network equilibrium addresses the spatial and temporal feasibility of decentralised task execution under
latency, bandwidth and connectivity constraints. While computational, monetary and energy conditions may
favour a given node, orchestration must ensure that task delivery satisfies real-world network thresholds.
The system is in network equilibrium when no task can be reassigned to an alternative node with lower
latency, higher availability or more reliable routing under the current topology, without breaching service-
level guarantees or destabilising neighbouring allocations.

Let δij denote the end-to-end latency between task origin oj and node i, and λj the latency ceiling defined
by the task’s service-level objective. Let Ri denote the current routing load and Li the network capacity of
node i. Define the binary selection function Πj(i) ∈ {0, 1}, indicating whether task j is assigned to node i.
Network equilibrium is satisfied if

Πj(i
∗) = 1 ⇒

{
δi∗j ≤ λj

Ri∗ ≤ Li∗
and Unet

i∗ ≥ Unet
k ∀k ̸= i∗, ∀j (39)

where i∗ is the node selected by orchestration, and Unet
i the constrained utility from processing task j at

node i, given latency and load.
The notation is defined as follows. δij is the observed latency between node i and task j, λj the permitted

latency for task j, Ri the routing load at node i, Li its bandwidth capacity, Πj(i) the binary routing decision,
and Unet

i the utility under effective delivery constraints.
A task-level example illustrates this logic. Suppose a latency-sensitive task requires completion within

100 ms. Node A offers higher token yield but sits at 150 ms latency. Node B, closer but less profitable,
satisfies the delivery constraint. If the task is routed to Node B and no other node offers a better feasible
utility, then the system satisfies network equilibrium. Redirecting the task to Node A would breach the
latency constraint, regardless of its economic advantage.

This equilibrium enforces physical plausibility in orchestration. It prevents economically or energetically
optimal but topologically infeasible assignments. Network equilibrium stabilises latency, preserves routing
symmetry and anchors the federated model in real-world delivery conditions.

4.6 Operationalising ESG in Federated AI Infrastructure

The Federated AI Infrastructure (FAII) aligns high-performance AI workloads with verifiable ESG criteria.
Unlike conventional data centres, FAII requires decentralised coordination across heterogeneous nodes. To
make ESG computable for orchestration and token allocation, environmental impact must be expressed
through internal, measurable indicators.

AI infrastructure creates environmental externalities mainly through electricity consumption, cooling
overhead and energy source composition. Among these, sourcing and cooling efficiency account for most
operational variance [57]. External metrics such as national Power Usage Effectiveness (PUE), defined as
total facility energy divided by energy used for compute [58], or grid-average carbon intensity do not apply
to FAII, which allocates tasks only within its own infrastructure. Internal benchmarks such as PUE, Carbon
Usage Effectiveness (CUE) and Water Usage Effectiveness (WUE) are therefore used for coordination and
ESG scoring [59, 60].

To enable verifiable comparison without imposing fixed assumptions, we define a discrete, internal scoring
model across four indicators. First, carbon source profile reflects the share of certified renewable or zero-
carbon energy in a node’s mix, based on real-time reporting and audit. Second, cooling efficiency is measured
as relative PUE (rPUE), the ratio of a node’s PUE to the FAII-wide average, enabling fair comparison
across heterogeneous infrastructure. Third, energy-to-work efficiency captures verified inference or validation
operations per kilowatt-hour, normalised by task type and node class. Fourth, the grid externality score
estimates marginal burden on the local power grid, based on geolocation and grid stress data. Let N be the
set of active nodes and let each node i ∈ N report a four-dimensional ESG indicator vector:

ei = (ρi, ηi, εi, γi) , (40)
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where ρi ∈ [0, 1] is the renewable energy share, ηi > 0 is the relative PUE (rPUE), εi > 0 is the energy-to-
work ratio, and γi ≥ 0 is the local grid externality score. A composite ESG performance score is calculated
as

ESGi = ω1 · ρi + ω2 ·
(

1

ηi

)
+ ω3 · ε−1

i + ω4 · (1− γi), (41)

where the weights ωj ≥ 0, with
∑4

j=1 ωj = 1, are system-defined and reflect policy emphasis. This
formulation favours higher renewable share, lower cooling overhead, higher efficiency and lower grid stress.

Each node is thus assigned a composite score reflecting its relative environmental performance within the
FAII. These scores inform task scheduling, token rewards and orchestration preferences. Because all indi-
cators are internally defined and normalised, they enable incentive-compatible environmental optimisation
without reliance on external benchmarks or central enforcement.

While the renewable energy share ρi reflects the proportion of non-fossil inputs in a node’s energy mix,
it does not distinguish among the heterogeneous externalities of different renewable sources. Solar, wind,
hydro, geothermal and biomass vary significantly in emissions, storage requirements and lifecycle footprint.
To capture this heterogeneity, the FAII consortium may establish a weighted index over certified renewable
energy types. Each source s ∈ S is assigned a strategic multiplier λs ∈ [0, 1], reflecting its relative desirability
under ESG objectives. The adjusted renewable share becomes

ρadji =
∑
s∈S

λs · ρi,s, (42)

where ρi,s is the proportion of energy from source s in node i’s declared energy mix. The weights λs are defined
by the FAII governance consortium, subject to public revision and informed by life-cycle assessment, strategic
independence and policy priorities such as resilience or decarbonisation targets. This mechanism enables
programmable prioritisation of renewable sources while maintaining comparability across heterogeneous
infrastructure.

The orchestration layer uses ρadji as the input for ESG-based routing and token allocation, ensuring that
source quality, not just quantity, informs decision logic. Table 2 illustrates a hypothetical assignment of
weights for illustrative purposes only. Actual values must be derived from transparent, multi-stakeholder
evaluation and are expected to vary across jurisdictions.

Energy Source Indicative ESG Characteristics FAII Weight
λs

Solar (photovoltaic) Low emissions, modular, high scalability 1.00

Wind (onshore) Low lifecycle emissions, intermittent, regional variability 0.95

Hydropower Baseload capacity, potential ecosystem impact 0.85

Geothermal Stable, clean, but geographically constrained 0.90

Biomass Emission-positive, renewable with verification overhead 0.60

Hydrogen (electrolysis) Clean if green-powered, low round-trip efficiency 0.70

Waste-to-electricity Circular reuse, residual emissions and monitoring needs 0.40

Table 2 Illustrative source-based weighting index for renewable energy inputs in ESG-adjusted scoring. Final values to be proposed and
ratified by the FAII governance consortium.

Note: Assigned weights are for illustrative purposes only. Final values must be subject to transparent evaluation and
stakeholder review across jurisdictions.

This extension improves alignment between ESG goals and orchestration logic. It preserves flexibility
for jurisdictional variation and reflects strategic policy objectives. Future research should focus on empirical
validation of weights, lifecycle impacts across regions, and resilience trade-offs under demand fluctuations.

4.7 ESG-aware orchestration logic and system biasing

System orchestration (D, ORC, Type II node) coordinates decentralised operations and executes ESG policy
within the FAII. In addition to routing, task allocation and protocol enforcement, ORC integrates environ-
mental preference structures into its decision logic. This includes a programmed bias towards ESG-optimised
nodes based on real-time performance scores.
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ORC receives as input the composite ESG score ESGi and its component metrics: adjusted renew-

able share ρadji , relative cooling efficiency ηi, energy-to-work ratio εi, and local grid impact γi. These are
updated continuously via the IIoT layer and validated through the permissioned DAG. Carbon credits,
source attestations and routing events are immutably recorded with timestamps and geolocation, ensuring
auditability. This design establishes a game-theoretic feedback loop. Node operators, knowing that ESG per-
formance affects workload and token allocation, are incentivised to adapt sourcing and infrastructure. The
system thereby converges towards decentralised environmental optimisation without central enforcement.
This dynamic depends on verifiable metrics, coherent signals and synchronised subsystem flows. The DAG
ensures traceability and event-binding; ORC operationalises ESG input into task decisions.

The orchestration logic follows a constrained optimisation model. Let T be the task pool, N the active
nodes. Define δt,i ∈ {0, 1} as the assignment indicator, and S(t, i) ∈ {0, 1} as technical eligibility. Then:

max
δt,i

∑
t∈T

∑
i∈N

δt,i · ESGi (43)

s.t.
∑
i∈N

δt,i = 1 ∀t ∈ T (44)

δt,i ≤ S(t, i) ∀t ∈ T , ∀i ∈ N (45)

This ensures every task is assigned to a compatible node while maximising aggregate ESG alignment.
The resulting distribution mechanism embeds environmental policy directly into operational logic, serving
performance and governance objectives concurrently.

4.8 Internal market coordination and bounded price dynamics

The Federated AI Infrastructure (FAII) implements a closed internal market for decentralised workload
allocation. Each Type III node operator acts as a market participant, offering compute, storage or validation
capacity in exchange for token-based compensation. Tokens are minted upon verifiable service delivery, with
output weighted by performance, reliability and ESG-adjusted multipliers. Internal pricing of service-level
objectives (SLOs) is determined dynamically through decentralised offer logic, constrained by governance-
defined corridors. Let p̄ denote the system-wide average token price per standardised workload unit. Each
node i ∈ NIII may submit an offer to process tasks at an effective unit price pi. To prevent destabilising
undercutting or speculative inflation, all bids must fall within a bounded corridor around the current system
average:

p̄ · (1− δ−) ≤ pi ≤ p̄ · (1 + δ+), (46)

where δ− ∈ [0, 1) and δ+ ∈ [0, 1) are governance-defined parameters reflecting acceptable downward or
upward deviation. This constraint ensures price stability and prevents market dysfunction while allowing
bounded strategic behaviour.

Nodes with lower ESG multipliers, due to suboptimal energy sourcing or cooling efficiency, can remain
competitive by offering discounts. This creates a rational trade-off between investing in ESG upgrades to
improve token multipliers and reducing price within corridor bounds to attract tasks despite lower scores.
The orchestration layer evaluates both the adjusted ESG score and the declared price pi when making
routing decisions.

Let mi ∈ [0, 1] be the ESG-based token multiplier assigned to node i. The effective token reward for a
unit workload is:

Ri = mi · pi, (47)

where Ri is the net compensated value. Nodes with higher ESG performance capture full token value at
baseline or premium prices. Lower-rated nodes must accept discounted returns or improve their ESG profile
to remain viable.

This pricing logic creates a self-regulating and incentive-compatible environment. It embeds economic
and environmental competition within FAII’s tokenised infrastructure without requiring centralised opti-
misation. Strategic autonomy is preserved, while bounded price constraints prevent market fragmentation
and disincentives for ESG alignment. Threshold parameters δ− and δ+ are adjustable by the FAII gover-
nance consortium and may be revised in response to macroeconomic shifts, policy changes or system-wide
coordination goals.
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5 Discussion

The proposed Federated AI Infrastructure (FAII) is a modular, decentralised architecture designed for
jurisdictions that face energy, land or sovereignty constraints. It separates model governance from distributed
inference and storage, then coordinates participants through an orchestrated marketplace with posted prices,
bounded multipliers and auditable settlement. This discussion interprets the design as a layered equilibrium
across computation, network, monetary and energy domains, with explicit ESG instrumentation and a
domestic carbon credit link. Marketplace dynamics are two sided. Demand consists of public workloads,
regulated industries and approved tenants. Supply consists of heterogeneous node operators treated as
market participants. The orchestrator first enforces feasibility on latency and bandwidth, then clears a posted
price market with a size neutral availability floor and calibrated multipliers for SLO performance, energy
quality and diversity. Congestion enters prices through a normalised queue term that dampens gaming
and supports predictable total cost of ownership for buyers and bankable revenue for suppliers. Incentive
alignment is analysed with non cooperative game theory. Each operator chooses availability, effort and energy
mix to maximise discounted utility given posted prices, multipliers and penalties. Under bounded multipliers,
corridor constraints and responsive congestion pricing, best responses are monotone and a Nash equilibrium
exists in which no operator gains from unilateral deviation. This equilibrium sustains task success, limits
tail latency and prevents reward concentration when dispersion rules cap allocation shares. ESG is a binding
economic signal. Each node presents time stamped, geo located attestations of source mix, rPUE and energy
to work. A composite ESG score adjusts routing priority and payout multipliers inside explicit bounds to
protect affordability. The FAII integrates industrial IoT feeds with a smart contract carbon credit module
that mints or retires credits with verified location and time metadata. Net prices and settlements reflect the
carbon intensity at the time and place of computation, which shifts load toward low carbon intervals and
creates demand for high integrity credits. Observability and auditability are central. The design assumes
verifiable disclosure of compute usage, energy provenance and network conditions through attestations and
metering that are tamper resistant and subject to periodic audits. Dispute resolution and parameter changes
follow a fixed cadence with capped step size, which supports investment while preserving policy control. Data
residency and sectoral access controls are enforced at the orchestrator to maintain jurisdictional sovereignty.
Scope limits are explicit. Security equilibrium covers adversarial strategies and the resilience of consensus
or coordination layers under Byzantine behaviour, which requires separate formal modelling. Governance
equilibrium covers multi stakeholder rule making, contract layering and sanctions for misreporting. Dynamic
shocks, cross border market interactions and fast regime shifts are out of scope for the static equilibrium
analysis and are reserved for future dynamic models.

The FAII is intentionally modular to fit heterogeneous jurisdictions. The architecture supports phased
adoption, differentiated parameters and policy driven scaling, provided that metering, corridor enforcement
and dispersion rules remain effective. With these preconditions, the market can sustain reliability targets
while increasing the work weighted share of verified low carbon energy.

6 Conclusion

The FAII offers a policy aligned alternative to hyperscale centralisation for nations that face energy, land
or sovereignty constraints. It operates a two sided market with feasibility first assignment, a size neutral
availability floor and bounded multipliers for performance, ESG and diversity. Prices remain inside cor-
ridors and respond to congestion, which yields predictable buyer costs and investable supplier revenues.
Operators optimise availability, effort and energy mix, and the marketplace converges to a Nash equilibrium
in which unilateral deviation is unprofitable while service levels remain within targets. ESG information is
embedded in the economics through audited attestations, a composite score and a smart contract carbon
credit link that allows prices and settlements to reflect location specific carbon intensity. Deployment
requires auditable metering, effective corridor and dispersion enforcement, and scheduled calibration of
parameters. The analysis is static and assumes honest reporting, leaving security and governance equilibria,
rapid demand shocks and cross border coupling to future work.

7 Limitations and Future Research

Several limitations constrain the scope and generalisability of the framework.
First, the equilibrium formulations are static and abstract from temporal variability in node availability,

energy conditions and regulatory parameters. In deployment, such dynamics may destabilise equilibria or
incentivise strategic timing. Incorporating time-dependent game-theoretic models or dynamic mechanism
design would improve robustness and predictive relevance.
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Second, orchestration is treated as logically central yet operationally distributed, but its internal con-
sensus, resilience to faults and susceptibility to manipulation are not formally modelled. A rigorous analysis
of orchestration under adversarial or asynchronous network conditions is needed to demonstrate scalability
and operational security.

Third, the reward model uses bounded multipliers and stylised task tiers and presumes tamper-proof ver-
ification of work. Verifiable computation, privacy-preserving performance attestations and energy-integrity
proofs must be incorporated to support auditability without revealing proprietary hardware or configuration
details.

Fourth, governance is treated at protocol level, not as a formal institution. The structure of the
consortium including voting, dispute resolution, sanctioning and the cross-jurisdiction enforceability of token-
denominated rewards and redemption remains unspecified. These features are decisive for adoption and
require dedicated legal-economic modelling.

Fifth, measurement error and data quality in ESG inputs are only partially addressed. Errors in source
attribution, rPUE measurement, time-of-use carbon intensity and carbon-credit provenance can bias rout-
ing and payouts. Statistical treatment of uncertainty, adversarial reporting models and robust multiplier
calibration are left for future work.

Sixth, privacy, compliance and market-power constraints are outside scope. Interactions with data-
protection regimes, sectoral procurement rules, financial-market regulation of token redemption and
safeguards against collusion or dominance by large operators need formal treatment.

Future research will proceed along five strands. First, formal time-variant equilibrium models with
stochastic availability and learning dynamics for prices, multipliers and best responses. Second, orchestration
resilience and fault tolerance under heterogeneous participation, including Byzantine behaviour and partial
synchrony. Third, incentive design under variable energy prices, stochastic ESG availability and endoge-
nous congestion, with robust calibration methods under uncertainty. Fourth, formal governance primitives
embedded in the FAII, covering voting, audits, sanctions and cross-border enforceability. Fifth, privacy and
compliance extensions that integrate verifiable computation, zero-knowledge attestations and differential
disclosure into the metering and settlement pipeline.
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