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Abstract

This article compares the meshless method and the classical finite element method in the case of
elastic-plastic analysis of pressure vessels. The finite element method has proven to be a robust
approach over the years and has been continuously developed for both static and dynamic analyses,
as well as linear and nonlinear applications. However, the use of the finite element method presents
some intrinsic critical issues, such as the generation of the calculation grid or mesh and dependence,
leading to the introduction of methods that do not require the explicit generation of a calculation grid,
or meshless methods. The purpose of this paper is to review the performance of a meshless resolution
compared with the traditional mesh-based approach, in the case of the verification of industrial HIPPS
valves, focusing on the precision and quality of the results obtained as well as the operating cost,
assessing the method’s operational advantages at an industrial level.
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1. Introduction

The structural analysis of valves used as final elements in protection systems is a requirement
expressed by different standards whose purpose is to ensure the introduction of reliable and safe
systems on the market.

Alongside the traditional analytical methods based on the Lamé, Mariotte and Barlow formulas, the
advent of electronic calculators and the spread of suites® based on the finite element method has made
the verification of pressure vessels through numerical simulation traditional. The transition to
numerical methods is justified not only by the possibility of obtaining results that are more responsive
to reality but also by the possibility of considering more load configurations at more reasonable costs
if compared to traditional experimental tests [1].

! The term suite is preferable, in the opinion of the writer, to the term solver, because, although the actual solution is
calculated by the solver, the engineer who is designing or verifying a structure must first prepare the mathematical model
to submit to the solver and then analyze the results obtained from the resolution. In both phases, the use of dedicated and
reliable programs has the same importance as the solver, as the computer science principle known as GIGO (garbage in,
garbage out) applies.

Volume 1, Issue 6, January—February 2026
Page 1|26


http://www.jngr5.com/
mailto:editor@jngr5.com

%Journal of Next-Generation Research 5.0 (JNGR 5.0)

INGR 5.0 E-1SSN: 3075-2868 Website: www.jngr5.com Email: editor@jngr5.com

The finite element method has proven to be a robust method over the years and has been continuously
developed for both static and dynamic analyses, linear and non-linear, in both the field of solid and
fluid mechanics?[1]. However, the use of the finite element method presents some intrinsic critical
issues, such as the generation of the calculation grid (mesh) and the dependence of the results on
mesh characteristics, leading to mesh-dependent outcomes, particularly when dealing with large
deformations or discontinuities [2—4].

It follows that the engineer who is preparing to carry out a finite element analysis must pay due
attention to the generation of the calculation grid and, subsequently to the generation of the results,
their critical analysis to determine whether pathologies related to the mesh may have influenced the
results. The most direct consequence is the time required for the correct generation of the calculation
grid, especially in the presence of particular geometries and with large variations in shapes and
sections.

One of the solutions proposed to overcome these problems is the elimination of the issue at its root,
namely the removal of the calculation mesh in the numerical solution of partial differential equations,
as stated by Liu [2].

The introduction of numerical methods that do not require the explicit generation of a calculation
grid, or meshless methods, allows us to overcome the problems highlighted in the previous paragraph,
since meshless methods (also known as meshfree) do not require the connection between the nodes
of the simulation domain via a grid (i.e. the information is conveyed via the elements), but are based
on the interaction of each node with all its neighbors®.

Meshless methods were initially introduced where large deformations or flows of matter were
required, such as in computational fluid dynamics or in simulations of plastic materials, as the use of
a traditional mesh introduced errors and results that did not correspond to reality [2,5-7].

A further field of application of meshless methods is fracture mechanics, both in the field of classical
mechanics [4,8,9], biomechanics [10], and geotechnical analyses [11,12].

Although they do not introduce a conceptual advantage in the field of classical structural checks
(small deformations and validity of the continuum hypothesis), meshless methods have begun to
spread mainly due to the greater efficiency of preparation of the mathematical model, especially in
the case of complex geometries, which therefore require a considerable expenditure of resources in
terms of man-hours. The purpose of this paper is to compare the meshless or meshfree numerical
resolution method with the traditional mesh-based finite element method, and to verify its
applicability in the verification of pressure vessels, such as valves used as final elements (valves) of
a HIPPS protection system, described in the next paragraph.

2 Traditionally, in computational fluid dynamics (CFD) analyses, finite difference or finite volume methods are used,
which are “relatives” of the finite element method. Furthermore, in recent years, in parallel with the introduction of
“multiphysics” simulations, the finite element method has been directly applied in solving fluid dynamic problems.

% With the added advantage that the “neighbors” can change over time / course of the simulation, while in the case of

FEM, the node / element correlation is fixed and immutable
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In particular, the verification will focus on the following points:

e comparison of the precision and quality of the results obtained with a meshless method,

e operating cost of the meshless method.
In fact, it will be verified not only that the meshless method is adequate to obtain the results with an
acceptable precision but also that its application is operationally advantageous at an industrial level,
i.e. that it requires a lower overall time than that necessary for a traditional finite element simulation.

2. Engineering Background
The purpose of this paper is to compare the elastic-plastic analysis of the pressure components that
constitute the final element of a HIPPS system. High Integrity Pressure Protection Systems (HIPPS)
are safety instrumented systems (SIS), assemblies dedicated to the protection of an industrial plant,
such as a petrochemical plant or an offshore platform, or part of these plants, intervening in the event
of overpressure recorded in the plant's supply line.
A HIPPS system is normally made up of three fundamental elements:

e initial elements, i.e. the measuring instruments whose task is to "start" the action,

e the control logic which, once the measuring signals have been collected, interprets them and

determines the intervention of the system,

o the final elements, consisting of the valve assembly plus the relative actuator.
Usually, in order to guarantee the required level of reliability, there are several final elements,
logically arranged in parallel. The physical arrangement instead depends on the implemented safety
function, i.e. the safety operation can be to close or open the valves. Respectively, the valves will be
physically arranged in series and in parallel.
Since the valve that constitutes the final element can be classified not only as a component of a safety
instrumented system but also as a pressure accessory, its design and verification fall under stringent
regulations and codes, such as the PED directive (2014/68/EU) [13] and the IEC 61508/61511
standards. The latter specifications require that the system and its components be verified for
systematic failures (i.e. have a verified and robust design), as well as for random failures. Therefore,
it follows that the manufacturer of a valve for a HIPPS system must perform countless tests and
checks before placing his device on the market, checks that are normally performed through
numerical analysis and simulations.
Valves are mechanisms or machines that control the flow of a fluid and its pressure through functions
like shut-off, throttling of the intensity of the flow and/or the downstream pressure, or act as pressure
relief. There are many models and types of valves that satisfy one or more of the functions identified
above, with a multitude of types and designs that adapt to a wide variety of industrial applications.
Regardless of type, all valves can be considered as a pressure vessel from a structural point of view.
The main pressure containing parts that composed a valve can be summarized as follows:

e Body,

e Closure or bonnet

e (Gland flange or Trunnion.
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In this paper, the analyses were executed on a valve body, but the methodologies here described can
be applied to each component as well as their assembly.

The body, also referred to as shell, is the main pressure element of the valve and transmits / supports
the loads deriving from the pipes (being the valves connected to the pipe through the body threaded,
bolted or welded joints), as well as acting as a container for the elements regulating the flow.

3. Applied Methodology
Valves are classified at the regulatory level as pressure accessories, both for European legislation, i.e.
the PED directive [13], and for American industrial standards, such as API 6A [14], 6D [15], 6DSS
[16], and 17D [17] which require the application of the design codes for pressure equipment (ASME
BPVC sec. VIII [18]) for valve design.
In particular, considering the wall dimensions and geometries of a valve, it is industrial practice that
the verification is carried out through the application of the design-by-analysis methodology defined
by part 5 of the ASME BPVC sec. VIII div. 2 [18], which provides for the following checks:
e Verification of protection against static loads, in particular:
o Verification of protection against plastic collapse.
o Verification of protection against local collapse.
e Verification of protection against instability.
e Verification of protection against cyclic loads, divided into:
o Verification against ratcheting,
o Verification against fatigue.
The traditional linear assessment is based on the comparison of the stress derived from the loads
applied to the component and the maximum allowable stress, derived from the characteristics of the
material (yield stress or ultimate load, appropriately reduced by a safety factor)
The stresses to be compared with the admissible ones are obtained through the simplified formulation
(Mariotte - Barlow) of the Lamé formulas, in the case of analytical verification, or through numerical
resolution with the finite element method, and categorized according to whether they contribute to
the equilibrium or have a self-equilibrated local effect. The fundamental assumption of this
methodology is that of the perfectly elastic behavior of the material, the small deformations and the
consequent validity of the principle of superposition of effects. It follows that the overall number of
analyses can be reduced by considering the individual acting loads and then exploiting the
superposition of effects.
This approach has the undoubted advantages of expressing the results in terms of:
e quantities easily interpretable such as the stresses
or, given the linearity of the approach,
e safety margins.
Given the result of the analyses for a set of loads, the designer can then understand the magnitude of
the stress in the case of a combination of loads and also understand how much the loads can be
increased (i.e., how much the thickness can be decreased) without invalidating the design verification.
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However, due to the complex geometry and thickness of valve’s pressure containing part, the above-
mentioned hypothesis could be no more applicable, and the traditional assessment could especially
around structural discontinuities, may produce non-conservative results and is not recommended by
the applicable code [18].

The code, thus, indicates in the load and resistance factor design method (with an elastic-plastic
formulation of the structural materials) the preferred assessment method with complex or thick
geometries. The assessment consists in the application of properly factored loads coupled with an
elastic-plastic formulation of materials. For each load case combination (global collapse, local failure,
etc.) a proper assessment criterion is provided.

In this paper, since we were interested in comparing the results obtainable using a meshless
methodology in the elastic—plastic field, verification analyses were conducted to assess protection
against global collapse, local failure, and fatigue due to cyclic loading.

3.1 Assessment Against Global Collapse

Under the action of the factored load, the structure under consideration may not be able to reach an
equilibrium configuration and support the loads or transmit them to the foundations. The verification
of protection against global collapse consists in verifying that the structure can assume an equilibrium
configuration such as to support the loads. This verification has been designed with numerical
resolutions in mind.

In fact, both traditional finite element analysis and meshless analysis consist in solving the algebraic
equations on the displacements obtained by discretizing the differential equilibrium equations. As
such, these resolutions are not in closed form, but approximate solutions obtained through numerical
iterations. The convergence of the method is monitored by the solver itself and has a very precise
intrinsic physical meaning: once convergence has been obtained, the structure has reached a stable
configuration consistent with the applied loads and constraints.

Since the numerical solver is not able to handle rigid motions, in the case of rigid motions, the solver
will not be able to find a congruent solution and therefore reach convergence: rigid motions can be
generated by two distinct conditions. The first is when the mathematical model has not been properly
created and the constraints applied in such a way as not to prevent rigid motions. This condition is
easily verified by applying modest loads and verifying that convergence has been achieved. The other
mechanism by which rigid motions can develop is when the forces applied to the structure are greater
than its load-bearing capacity, as there will be indefinite deformations and a rigid motion of the
structure or parts of it.

Consequently, in a properly constrained model, the rigid motion of the structure (or part of it) is an
unequivocal sign that structural collapse has occurred. That is, the convergence of the solution implies
the achievement of an equilibrium configuration congruent with the loads and constraints and
therefore satisfaction of the global criterion.

3.2 Assessment Against Local Failure

Protection against local failures, i.e. the creation of unstable plastic hinges in localized areas of the
structure, occurs with the evaluation of the plastic deformations at each point of the structure and
verify that it does not exceed an admissible value.
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For a generic load condition, the following must be obtained:
Epeq T Ecf < &L (@)
Where:
®  &peq is the equivalent plastic deformation evaluated through numerical simulation,
® &y is the residual deformation resulting from stamping or forging processes,
®  &peq is the maximum triaxial deformation for the material subjected to the load considered.
The maximum triaxial strain is evaluated as

e e ex [_< Ay >'(0'1+0'2+0'3_1>] @
L= & P\ 30, 3

Where:

e &y 1s the maximum uniaxial strain of the material,
* ag and m, are parameters related to the material typology and defined by the code (18),
e 0; are the principal stresses given by the load condition considered,

e g,= % [(ay — 03)* + (0, — 03)% + (03 — 01)?]%> is the von Mises equivalent stress.

It should also be noted that, although at first glance the verification of protection against local failures
may seem to be a classic ASD approach, as the actual deformations are compared with the allowable
ones, in reality the approach is actually non-linear as the value of the allowable triaxial strain is
determined by the stress tensor currently applied — it follows that by varying the loads and their
combination, this value undergoes variations that are not necessarily linear.

In case of multiple load conditions, a concept similar to the accumulated damage for fatigue can be
introduced. Defining the damage for the i load condition as (strain limit damage):

8 .
Dej = — 3)

€peqi t Ecr

In order for the protection against local failure to be verified, it must be that:

D= Dy<1 @)
3.3 Assessment Against Cyclic Loads
The procedure for fatigue verification is based on the analysis of the load history using for example
an algorithm such as the rainflow method or the min-max method (in order to obtain an ordered
sequence of loads representing the cycles) and on the stresses and deformations obtained through a
numerical simulation and applying appropriate calculation methods such as the Twice Yield Method
developed by Kalnins [19,20].
The rainflow method is defined by the ASTM E1409 standard and is recommended by the code to
determine the times that represent the unique load cycles where the variation in time of the loads,
stresses and deformations can be identified by a single parameter. The cycles counted with the
Rainflow method correspond to closed stress-strain hysteresis loops, with each loop representing a
cycle.
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The min-max method is recommended where there are non-proportional loads and
stresses/deformations. The cycle counting is performed by first building the largest cycle, using the
highest peak and the lowest valley, then further cycles are built taking peaks and valleys in descending
order, until all the peaks are exhausted.

The Twice Yield Method is based on an elastic-plastic structural analysis performed in a single
loading phase, considering a stabilized stress-strain curve, in which a loading interval represents a
cycle of the loading history. Stress and deformation are the direct result of this analysis. The advantage
of this method is that it is possible to use a monotonic analysis without any loading-unloading cycle.
In other words, it is possible to think of performing a single multi-step analysis, in which the load is
applied in a monotonically increasing manner and each step represents a cycle of the loading history.
For each component and for each load cycle (therefore, using the twice yield method for each load
step), the ranges of stresses (AS,, ;) and plastic deformations (A, i) are evaluated. Having applied
the twice yield method, the range of stresses and deformations correspond to the stresses and
deformations of the single load step. We then proceed to evaluate the effective range of deformations
for the k™ cycle (step):

_ ASpk
A‘geff,k - E—+ A"3peq,k, (5)
ya,k

And subsequently the equivalent alternating stress for the cycle considered:
E - Ag
Satey = 2L (6)
2
From the S-N curves provided by the code, we then calculate the maximum number of cycles allowed

N, for the stress found and therefore the accumulated damage:
Ny

Dep = —

Having indicated with n; the number of cycles expected for the load condition considered. In order
for the fatigue test to be satisfied, the sum of all accumulated damage must not exceed unity:

M
> Dpe<10 ®)
k=1

3.4 Linear Elastic Assessment
In addition to the elastic-plastic analysis, the same models have been simulated under nominal loads
conditions (i.e., no factored loads) with a simple linear elastic material formulation, in order to
retrieve stress, strain, and the execution time also for this type of simulation.
3.5 Comparison Methodology
The results will be compared with each other taking as a reference the stress and deformation values
obtained through the finite element method the dense calculation grid.
Since the program used to evaluate the meshless method has fixed outputs, we will not proceed to
evaluate the local criterion according to ASME, but we will focus only on the values of

e Stress
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e Equivalent elastic deformation (total)

e Plastic deformation
The simulation execution times will also be evaluated.
In order to have a more balanced comparison, machines with equivalent capacity and computing
power will be used, in particular using the same number of processors for the resolution.

4. Resolution Methods and Solvers
4.1 The Finite Element Method and Solvers
CAE simulation tools, usually based on finite element method, are extremely important because they
allow them to validate the performance or optimize the design of a product before the product itself
is physically created.
The finite element method is based on the variational or discrete formulation of the problem to be
solved and on the discretization of the integration domain in quantized calculation cells, i.e. the finite
elements: the finite element method involves the transformation of a continuous problem into a
discrete algebraic problem, with the obvious advantage of decreasing the resolution complexity of
the problem [21].
This is achieved by spatially discretizing the problem: the real domain is divided into enough
elementary subdomains (elements), characterized by being connected to each other via points (nodes).
The continuity of the domain is then lacking since the various elements are only connected pointwise.
Within the single element, the solution that is desired is expressed through a series development. Note
that the discretization is at a spatial level, since the development is done through continuous functions
although different from element to element.
The fundamental parameters of the solution are then referred to the interconnection nodes between
the elements, so that the information can be transmitted from element to element.
Furthermore, the elements into which the domain is divided do not generally have arbitrary shapes
but it is preferable to use standard normalized elements (obviously different from time to time
depending on the physical problems involved): in this way the properties of the elementary domain,
expressed through the N functions, are calculated upstream on normalized elements and subsequently
referred to the real domain of the problem with appropriate coordinate transformations.
Based on this development, even the applied loads, or more generally the boundary conditions of the
problem, are concentrated in the nodes, through the same methodology adopted for the mechanical
characteristics.
The advantages of such an approach are various and can be summarized as:

e asimpler solution approach (of an algebraic type),

e alower computational cost (compared with the strong resolution of the PDEs),

e the precision of the solution can be modified by increasing or decreasing the spatial

discretization of the domain.

On the other hand, the method involves significant disadvantages:

e the solution obtained is not “exact” because deduced from:

o aweak (variational) form and not strong approach,
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o anumerical calculation on discretized domains,

e the solution strongly depends on the modeling adopted and therefore the same problem can
be addressed in different ways with different results (for example, because a load that is
actually distributed has been concentrated).

The typical workflow of a finite element resolution is shown in the following Figure 1.

‘ Geometry generation ‘

l

‘ Element mesh generation ‘

|

‘ Shape function creation based on element with proper mapping ‘

|

Discretized equations using weak forms integrated based on elements

| Global matrix assembly ‘

|

l Support specification F—{ Essential boundary conditions

| Solutionsfor displacement ‘

‘ Computation of strains and stresses from displacements |

|

‘ Results assessment ‘

Figure 1. Finite Elements Traditional Workflow

4.1.1 ANSYS Workbench and SimScale (Code ASTER)
To retrieve the finite element results, three models/solvers have been considered:
¢ An engineering acceptable (coarse) mesh, with a majority of prismatic elements, solved with
ANSYS mechanical solver,
e Arefined mesh, with a majority of prismatic elements, solved with ANSY'S mechanical solver,
¢ An engineering acceptable (coarse) mesh, with a majority of tetrahedral elements, solved with
Code ASTER (SIMSCALE implementation) online solver.
The rationale of this selection consists in the comparison of already known tools, with the meshless
solver, and an online tool. For the latter, the basic mesh configuration was chosen, with a view to
comparing the operational methodology in the design phase, where it is preferable to obtain a result
in a short time and the detailed checks (with more refined meshes) are left to a later phase.
ANSYS Workbench is a suite of programs dedicated to the numerical simulation of physical
problems, from structural calculations to thermo-fluid dynamics. It is composed of several tools
ranging from a solid modeler for cleaning operations and possibly the creation of geometries, a
graphical interface for the creation of the calculation grid and the application of boundary conditions
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and loads as well as the analysis of the results downstream of the analysis, as well as obviously the
actual finite element solver. The latter is recognized at industrial level and its validation is not
normally required, also having an extensive bibliography attesting to the validity of the resolutions.
For comparison, a commercial implementation (on cloud) of the open-source finite element solver
Code Aster was also used (via the SIMSCALE platform).

4.2 The Meshless Method and Meshless Solver

As highlighted by Liu [2], the weak link in the traditional approach based on the finite element method
is the intrinsic need to create the computational grid (mesh) that is both accurate and efficient.

The computational grid generation process can fail miserably if performed directly on the original
geometry of the studied object as conceived by the designer, in the case of complex objects or with
numerous details, for example due to fillets or chamfers of negligible size compared to the other
dimensions of the part. Alternatively, the grid can be generated but with an excessive number of
elements that make its analysis highly inefficient in an industrial context, especially during the
product development phase.

Furthermore, the grid generation could result in elements that are too distorted that compromise the
analysis results, for example by causing stress concentrations beyond the material limits.

In the case of products consisting of multiple parts, moreover, incompatible grids on adjacent parts
make resolution difficult and can give rise, as above, to unusable results.

It follows that the simplification of the geometric model of the piece studied requires experience and
foresight on the part of the modeler, having first to interpret the physical phenomena and introduce
into the model the simplifications necessary to obtain on the one hand a model consistent with the
reality to be studied and on the other a model that can be easily analyzed and that gives usable results.

{ Geometry generation ‘

I

| Nodal generation / triangulation |

| Shape function created based on selected local nodes |

I

[ Strainfield construction ‘

l

‘ Discretized equations using weak or weakened forms based on cells ‘

I

I Global matrix assembly I

l

l Support specification I-—{ Essential boundary conditions

I

| Solutionsfor displacement ‘

I

| Computation of strains and stresses from displacements |

l

| Results assessment |

Figure 2. Meshless Method Workflow
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Meshfree or meshless methods (whose workflow is shown in Figure 2) aim to overcome the
aforementioned problems by addressing them at their root [2,3], namely by eliminating the need to
define a calculation grid a priori. In these approaches, the domain of interest is no longer represented
by a grid of nodes and elements (i.e., elements interconnected through nodes), but is discretized solely
by a set of arbitrarily distributed nodes. The solution is then based on the interaction of each node
with its surrounding nodes, with the shape functions defined only over the domain (or a portion of it)
and the nodes contained therein.
Thus, meshless methods and the traditional finite element method are both based on the weak
formulation of the differential problem. Both are based on the three key points highlighted in the
previous paragraphs:

e the construction of the shape functions,

e the integration on the domain,

e the weak form used to create the discrete algebraic system to be solved numerically.
The field variable (displacement, stress or strain) at each point within the domain of study is
approximated or interpolated using the nodes within a given “support domain” within the chosen
node.

u(x) = Z i (x) -y 9)

i€Sp

Where:

e S, is the set of local nodes included in the support domain, in a local (bounded) domain of the

considered point,
e u; is the field variable at the i nodal point,
e ¢;(x) is the nodal shape function, the shape function of the i-th node created using all the
support nodes contained in the support domain.

Please note that the interpolation defined by the previous equation is generally performed for all
components of all field variables in the same support domain: for example, if one is interested in the
displacement field, the same shape function is used for all three displacement components. However,
there may be situations where one can use different shape functions — for example, to calculate
deflection and torsion in structural simulations, in order to avoid shear-locking and membrane-
locking phenomena. The “support domain” of a generic point x determines the number of nodes that
will be used to approximate the function at the point x. This support domain can be “weighted” using
functions that vanish on the boundary of the domain.
For the construction of the shape functions for a generic point x,, the nodes that contribute to the
definition of this shape function are those whose domain of influence covers point x.
The use of distributed nodes not only allows to overcome the problems seen in the previous paragraph
but also offers further advantages — for example the possibility of increasing their number in the stress
concentration zones without having to worry about their relationships with pre-existing nodes, or,
increasing the propagation zone of a crack to evaluate its stress and propagation.
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Since it is not necessary to generate a quality calculation grid, and since the nodes can be positioned
in an automated way, the times traditionally required by an engineer / analyst for the generation of
the mesh can be avoided, an obvious saving for companies.

In meshless methods, shape functions are based on a point or cell of the domain, using a small number
of local modes, selected in the vicinity of the cell or reference point — thus the shape function depends
on the local position in the domain and the construction of shape functions in meshless analyses
occurs during the analysis itself.

e Integration in meshfree methods is based on the background cells / nodes, directly or indirectly
with various approaches, among which we can mention:

e Using directly the cells created for the domain (similarly to FEM) (Element Free Galérkin
method);

e Using smooth domains based on nodes created from the original cells (Node-based smoothed
Point Interpolation Method, NS-PIM);

e Using smooth domains based on edges created from the original cells (Edge-based Smoothed
Point Interpolation Method, ES-PIM);

e Using triangular sub-cells created by further subdividing the original cells, (Cell-based
Smoothed Point Interpolation Method, ES-PIM or Constructed Point Interpolation Method,
SC-PIM).

4.2.1 External Approximation Method
The ALTAIR SIMSOLID® solver is based on the theory of external finite element approximations ,
[22,23] which are a generalization of the finite element method, where:

e Arbitrary geometric shapes can be used as “finite elements” — note that here the term “finite
element” is used to designate an arbitrarily shaped subdomain of the Q0 domain, so the
definition of a finite element is no longer limited to canonical shape functions or other shapes
obtained from a canonical shape by mapping. One could then consider the entire domain as a
finite element, i.e. for assemblies, a part of an assembly could be a “finite element” in FEM
terminology

e The basis functions that approximate the field of interest can be of an arbitrary class and are
independent of the shape of the volume — the functions no longer need to be polynomial, and
the only requirement is that they are sufficiently “smooth” inside the element.

Since the continuity of shape functions in the classical finite element method is only guaranteed at
the local level, the success of the finite element method has shown that the continuity and continuity
of derivatives requirements can / must be satisfied only to a certain extent. The extension of this
approach of relaxing the continuity requirements has led to the concept of “external approximations”,
where the term external must be understood as external to the space of finite strain energy functions
(Sobolev’s space).

Altair SIMSOLID is a program for solving structural problems (static and dynamic) based on
meshless methods. ALTAIR's response to the market demand for streamlining numerical simulations
was precisely to implement a meshless method as a replacement for the traditional FE method, rather
than through improvements to the user interface.
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All the complexities traditionally associated with the generation of the calculation grid (from
geometry simplification to grid quality control) are obviously not present in SIMSOLID since the real
geometry of the object or system to be analyzed is processed directly. Assemblies can have parts with
different thicknesses and dimensions (large / small or thick / thin).
The time required to set up the simulation model is consequently significantly shorter and,
furthermore, the reduction of the required process phases also leads to a reduction in the possibility
of error by the user.
To further refine the solution, an adaptive refinement process has been introduced by default during
the solution process.
The workflow in ALTAIR SIMSOLID can be summarized as follows:
e Import the geometry from CAD — as mentioned, it is not necessary to “clean up” the geometry.
e In the case of assemblies, define the connections between the various parts — the connections
are normally already recognized by the program as “glued” or “mutual sliding”, they must be
modified if necessary, according to the need.
e Define the analysis parameters — such as the type of analysis (linear or nonlinear structural
statics, thermal, modal, etc.).
e Define the convergence criterion — in the static structural field it is possible to choose between:
o convergence on stiffness,
O convergence on stresses,
o a custom defined convergence criterion.
e Apply boundary conditions and loads.
e Solve the problem, with adaptive methods.
e Post-process / analyze the results.

5. Problem Modelling

5.1 Pressure Vessel Description
The element that is most characterized as a pressure vessel is the valve body and given the limitations
of the simulation programs, only this component has been analyzed according to the checks discussed
in the previous paragraphs. Due to the geometry selected, exploiting symmetry properties, only a
quarte of model has been considered Figure 2.

Figure 2. Valve Body, Quarter Model
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The perfect simulation would be the one that completely reconstructs the physical object and all the
boundary conditions of the problem considered, in other words, the reproduction of the environment
in which the object of study is inserted. It goes without saying that such a mathematical model would
be unusable, as it would necessarily be too complex and expensive.

The purposes of modeling can be summarized as:

e reproducing physical reality in an advantageous way, i.e. the reproduction of physical reality
occurs by introducing simplifications aimed at reducing the computational cost of simulations,
so that the simulations themselves can be carried out in reasonable times and with physically
coherent results,

e closing the mathematical problem and allowing numerical resolution, i.e. modeling has the
task of closing the mathematical problem, applying appropriate boundary conditions.

Since the simplifications introduced must not alter the physics of the problem, it is therefore essential
to first understand which effects we are interested in and which components, details and conditions
greatly influence these effects.

In this case, being interested in the study of the body as a pressure vessel, the effects of the other
components of the valve, such as closure, or of the environment in which the valve is located, cannot
be neglected, but also not directly modeled.

The simplification of the real model in this case was therefore reduced to the extraction of the body
from the valve and the introduction, as constraints and loads, of the effects due to the environment
and the other components of the valve.

In detail, the pressure forces due to the pipes were introduced directly on the body as forces applied
to the end flanges, while the effect of the closure and the related linkage was simulated through the
translation constraint on the vertical. In fact, since the pressure vessel, in its entirety, is a self-balanced
body, the effect of the pressure on the closure and the effect of the linkage are equal and opposite to
the effects of the pressure on the body itself. In fact, this is precisely the definition of the constraints
on the displacements in physical terms.

As for the constraint on the translation to the other directions, it is obtained by exploiting the
symmetry of the geometry and the applied loads, which allows the use of a quarter of the model.
The use of symmetries also allows not only to reduce the computational cost but also to apply natural
boundary conditions that do not introduce constraints on the movements of the structure.
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The two surfaces parallel to the symmetry planes were therefore constrained to the normal
displacements of the surfaces themselves, while the vertical translation was suppressed (Figure 4).

Figure 4. Boundary Conditions and Loads Applied, ANSYS Model (Left) and Altair (Right)

5.2 Mesh Description

In the case of finite element simulations, it was necessary, as known, to prepare the discretization of
the calculation domain in elements.

As a good engineering practice in order to improve the numerical results with the same number of
elements and nodes (especially in this case, where using the non-commercial (Student) Version of
ANSYS, the total number of elements is set to 32,000), the calculation grid was created by applying
the following options:

e Activation of the elastic-plastic options (“plasticity options — shape checking: nonlinear
mechanical analysis”);

e Having forced the solver to generate prismatic elements (“hexahedral dominant”), where
impossible (i.e. where elements too distorted would have been generated), the selection fell
on tetrahedral elements.

20-node second-order hexahedral elements (SOLID 186) and 10-node tetrahedral elements (SOLDI
187) were used [24] (see also Figure 5).
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Figure 5. Mesh Metrics, ANSYS Coarse Mesh

Due to software limitations on the maximum number of elements for the simulation, a maximum
element size of 20 mm was defined — lower values would have increased the number of elements
beyond the permitted limit. The calculation grid was thus rather sparse in some areas, particularly in
the pipeline and in the seat impost, where only two elements are present. The choice of adopting
second-order elements helps to overcome this shortcoming and obtain reasonable results of
engineering interest.

To verify the goodness of the finite element model, a more refined model (~ 193'000 nodes) was
developed using the commercial license of ANSY'S (mesh metrics shown in Figure 6).
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Figure 6. Mesh Metrics, ANSYS Refined Mesh
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Additionally, as said, in previous par. 0, a third solver has been considered. For this solver, the basic
mesh configuration was chosen, with a majority of tetrahedral elements.
A visual comparison of the meshed model is displayed in the following Figure 3.

ANSYS ANSYS SIMSCALE / Code
(coarse mesh) (refined mesh) Aster

Figure 3. Finite Element Models’ Mesh

5.3 Material Formulation

5.3.1 Elastic Plastic Formulation for Global and Local Collapse

The verification methodology described by ASME BPVC sec. VIII div. 2 part 5 [18] for static elastic-
plastic analyses (protection against plastic collapse, local verification and instability) requires that the
material is described by an appropriate stress-strain curve that includes the plastic part. The 3D
appendix of the code describes how to obtain the elastic-plastic curve of a ductile metallic material

given some characteristics such as yield, unit load at break, specific elongation, Poisson's modulus:
Ot

€t=E_+V1+Y2 (10)
y
With:
S In(R) + (ep — eys)
m, = 0.75- (1 —R) b (In(1+e) g, =2.0-1075
n —
ln(l + eys)
e o,s(1+¢ = 11
¥1 = = (1 — tanh(H)) 1= s ysznl g = (ﬁ)ml (1)
2 (In(1+ gyS)) Ay
& Outs exp(mz) o =
Y2 = (1 + tanh(H)) Ay = —— e, = (L)™
2 m,? 2 A,
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Gutsi = Outs XP(ms) gy = 2 (at - (ay(s +K (Uuts)— ays))> £, = 0.002
K Oyuts — Oys

. 1.5 2.5 3.5 = %
K =1.5R" — 0.5R*> —R R =

Outs
Please note that parameters m, and €, are defined by the code for several materials. The values here
indicated refer to stainless steel and nickel-based alloys.
Please also note that in the numerical simulation, as indicated in article 5.2.4.4 of the code, the

simulation must use real stress and not engineering ones, that is, the curve must be extended up to the
true ultimate stress, defined by the value:

Outst = Ouyts exp(m,) (12)

It can be noted that the elastic-plastic formulation requires more parameters for the construction of
the curve, unlike the classic methods based on the elastic formulation of the material, where only two
parameters are strictly necessary, the Poisson’s modulus and the Young’s modulus (or another
equivalent parameter, e.g. the shear modulus).

5.3.2 Elastic-Plastic Formulation for Fatigue Analysis

In a similar way, in the case of the elastic-plastic verification of the protection against fatigue
phenomena, the calculation code provides for the use of a Ramberg-Osgood type curve in paragraph

3-D.4 of [18], formulated as follows:
1

_ 0Oa _ ( Oa \ncss 13
em_Ey+(KCSS) (13)

This relationship links the amplitude of the deformations to the amplitude of the stresses and, to take

into account the hardening and the hysteresis loops, can be rewritten as:
1

Or Oy ncss
=—"+2- 14
e Ey+ <2-KC55) (14)

Please note that the coefficients K g5 and n.gg are provided by the code only for some generic families
of materials, and not for specific material. In the case of exotic or non-tabulated materials, such as
duplex steels, it is necessary to refer to the specific literature to obtain the coefficients K g5 and nggs
necessary for the analysis. Theoretically, the parameters of interest are obtained with expensive and
long experimental fatigue test campaigns - however, there are theoretical formulations that are close
to the experimental results and based on the properties of the materials obtainable through classical
tensile tests, as described in the works of Marohnic et alt. , [25,26], Lopez and Fatemi [27], or Zhang
et alt. [28].

In particular, the Lopez and Fatemi formulation, [25,27] is easy to implement and has excellent
experimental correlation, and it is described as follows:
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Outs
1.16 - g5 + 593 per - > 1.2
Kess = 72 Outs (15)
k3'0 -107%. a,fts + 0.23 - oyys + 619 per p <1.2
Vs
and
Oys

Outs

Once the equivalent alternating stress values have been obtained, the number of admissible cycles
can be obtained using a classic Wohler SN curve depending on the material considered. The code
provides the curves for the most commonly used families of materials and there is normally no need
to search for other data.

Furthermore, the curves are calibrated according to the basic philosophy of the code, as indicated by
Kalnins , [19,20] that is, the danger index considered here is the crack nucleation. Using curves from
other sources could lead to a methodological error as the danger indices would be different and the
safety margins required by the code would be distorted.

6. Results

6.1 Structural Analysis Results Comparison

Since all simulations have reached convergence, it is possible to state that each solver is able to solve
the elastic-plastic assessment against the global collapse, i.e. the pressure vessel is able to sustain the
factored loads with no general collapse.

The distribution of stress and strains is similar in all four simulation methodologies, both for the case
of the verification against local failures and the fatigue verification. The meshless method correctly
identifies the same critical regions as the finite element method, as shown in Figure 8.

A: Static Structural
Equivalent St

ress
Type: Equivalent (von-Mises) Stress
Limit:

nit: a
Tirme: 1

Max: 171.02
bAin: 007732

171.02
152.13
133.23
114,34
05.445
TE.552
57.658
38.765
18.871
0.97732

Figure 8. Stress Distribution, Meshless Method (Stress Convergence Approach, Left) and
Finite Element Method (Right)
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However, considering the specific values, which must be used for ASME checks, the results seen in
the previous paragraphs demonstrate without any doubt how the settings made at the level of the
mathematical model, both in the case of the classic finite element method and in the more recent
meshless approach, heavily influence the results. This is evident by making a value-by-value
comparison for the various configurations analyzed, as shown in Table 1

Table 1. Assessment of local Failure Results

Strain Strain Strain
Stress
Total elastic Plastic
(MPa)
(mm/mm-107) (mm/mm-1073) (mm/mm-107)
ANSYS (coarse mesh) 158.76 1.506 0.873 0.633
ANSYS (refined mesh) 171.02 1.547 0.899 0.648
SIMSCALE 168.90 1.809 0.919 0.890
SIMSOLID
192.59 2.440 1.210 1.230
(Stress convergence)
SIMSOLID
173.48 1.662 1.02 0.642

(Strain convergence)

As for the classic finite element method, using second order elements and hexahedrons, the use of a
fairly sparse calculation grid provides stress differences of up to 10%, while there is greater precision
on the deformations. This behavior can be seen in both the assessments (i.e. local failures and
assessment against fatigue), a sign that the material formulation does not influence the calculation
(see Tables 2 and 3).

Table 2. Assessment of Cyclic Load Results

Strain Strain Strain
Stress
Total elastic Plastic
(MPa)
(mm/mm-107) (mm/mm-1073) (mm/mm-107)
ANSYS (coarse mesh) 154.36 0.863 0.846 0.0165
ANSYS (refined mesh) 142.55 0.860 0.817 0.0428
SIMSCALE 152.6 0.876 0.811 0.0645
SIMSOLID 144.12
0.798 0.614 0.184
(Stress convergence)
SIMSOLID 143.1
0.732 0.590 0.142

(Strain convergence)
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Table 3. Linear Elastic Results

Strain
Stress
elastic
(MPa)
(mm/mm-1073)
ANSYS (coarse mesh) 140.20 0.701
ANSYS (refined mesh) 147.20 0.736
SIMSCALE 197.80 0.989
SIMSOLID 195.53
0.978
(Stress convergence)
SIMSOLID 145.96
0.730

(Strain convergence)

In the case of analyses conducted with the meshless method, as well as in the case of tetrahedral
meshes, assuming that the value recovered from the finite element analyses with the fine mesh is the
“real” values, it can be observed that:
e the values calculated by privileging convergence on stiffness are normally more aligned than
those obtained with convergence on stresses,
o the total and plastic deformations obtained with convergence on stresses are significantly
higher,
e the total deformations, in both cases, are very high.
Since no analytical solutions or experimental data are available, to compare the results it is possible
to consider the results obtained with the refined mesh solved with ANSYS® as the “good” solution,
and, thus, evaluate how far the other solvers (and mesh) are. The percentage differences between
the results are reported in Tables 4 and 5.
Considering the values obtained using the nominal pressure and the linear material formulation,
smaller differences and comparable calculation times are observed (see Table 6).
Table 4. Percentage Difference Between Solvers, Local Failure Analysis

AStrain AStrain AStrain
AStress
Total elastic Plastic
(70)
(7o) (70) (70)
ANSYS (coarse mesh) -7.169 -2.650 -2.892 -2.315
SIMSCALE -1.240 16.936 2.225 37.346
SIMSOLID 12.613
57.725 34.594 89.815
(Stress convergence)
SIMSOLID 1.438
7.434 13.459 -0.926

(Strain convergence)
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Table S. Percentage Difference Between Solvers, Cyclic Load Analysis

AStrain AStrain AStrain
AStress
Total elastic Plastic
(70)
(7o) (70) (70)
ANSYS (coarse mesh) 8.285 0.349 3.550 -61.449
SIMSCALE 7.050 1.86 -0.734 50.701
SIMSOLID 1.101
-7.209 -24.847 329.907
(Stress convergence)
SIMSOLID 0.386
-14.884 -27.785 231.776

(Strain convergence)

Table 6. Percentage Difference Between Solvers, Linear Elastic Results

AStress
(%)
ANSYS (coarse mesh) -4.755
SIMSCALE 34.375
SIMSOLID 32.833
(Stress convergence)
SIMSOLID -0.842

(Strain convergence)

6.2 Execution Time Comparison

In terms of timing, the use of the meshless method has effectively eliminated the time needed for
designing and generating the calculation grid, including the “cleaning” times of the geometric model.
However, it is noted that the calculation times for elastic-plastic solutions, especially in the case of
verification against plastic collapse and local failures, are greatly superior to the time required by the
finite element solver, having in fact, for the first solution, execution times in the order of tens of
minutes, to be compared with the few minutes of an FE analysis with the refined grid.

The main cause is the use of material nonlinearities that have introduced additional iterations for
convergence — in fact, in the fatigue analysis, which presents a very weak plasticization (if not zero,
in the vicinity of the numerical error), the calculation times are aligned with those of the finite element
method with a sparse grid (a few seconds). In fact, if we consider the values relating to the calculation
with the nominal pressure and the linear formulation of the material, we have smaller differences and
comparable calculation times between the selected solvers.

The calculation times for the simulation in ALTAIR SIMSOLID refer to the resolution of the various
simulations, conducted individually. Please note that ALTAIR SIMSOLID allows you to solve the
system by favoring the convergence of stress rather than that on stiffness. With the same initial
conditions, by running the simulation again by changing only the target (for example by first setting
the convergence on the stresses and then that on the stiffness), the second simulation is much faster,
starting from the results of the first.
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Please note that Tables 7 and 8 report the solver execution time (and the corresponding percentage
differences); therefore, the time spent on mesh generation and model setup is not included.
Table 7. Solver Execution Time

Execution time —

Execution time —  Execution time —
global and local
cyclic loads linear elastic
collapse ) )
s, s
(s)
ANSYS (coarse mesh) 38 12 10
ANSYS (refined mesh) 179 69 60
SIMSCALE 180 600 50
SIMSOLID 1931 8 79
(Stress convergence)
SIMSOLID 11 8 7

(Strain convergence)
Table 8. Percentage Difference Between Solvers, Execution Time

AExecution time
AExecution time  AExecution time

— global and
local collapse — cyclic loads — cyclic loads
© (s) (s)

ANSYS (coarse mesh) -78.78 -82.61 -83.33
SIMSCALE +0.559 +769.56 -16.67
SIMSOLID +978.77 -88.41 +31.67
(Stress convergence)
SIMSOLID -93.85 -88.40 -88.33

(Strain convergence)

7. Conclusions

This article summarized the analyses conducted to compare traditional FE method and the meshless
approach in the assessment of a pressure containing part as per ASME BPVC sec. VIII div.2. The
analyses demonstrated that the meshless method has excellent potential in terms of ease of use of the
software and setting of the physical problem, freeing the analyst from the task of preparing a refined
calculation grid.

However, the values obtained from the meshless analysis in the nonlinear context are quite different
from those obtained with the classic finite element methods and this contributes to undermining
confidence in these methods. On the other hand, the differences found are comparable to those
obtainable with the finite element method in the case of different mesh types and this reconfirms how
the preparation of the calculation grid is critical.
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Furthermore, the calculation times required are, at least as far as the model examined is concerned,
markedly higher than those required by the finite element simulation, and if we consider the overall
times, given by the sum of the times required for modeling and simulation, there is no obvious
advantage when final verification analyses need to be performed on the product.

In light of the fact that the results obtained in the linear field differ less, and that for the linear analysis
the efforts to validate the project are sufficient, as well as the execution times are significantly
reduced, the meshless methodology seen can be introduced as a support tool for designers in the initial
design phase, where a rapid estimate of the efforts and the possibility of comparing multiple
engineering solutions in a short time are recurring needs.
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