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Abstract

The objective of this analysis is to address the challenges encountered by pricing systems in managing real-time
market dynamics. This study presents a fundamental theoretical framework with a focus on taxonomy and ontology
for a domain-specific multi-agentic artificial intelligence (AI) serving as an internal price advisor to optimise pricing
strategies for products and services. The system is designed to function in conjunction with other corporate AI
systems and an Enterprise Resource Planning System (ERP). The ERP serves as a high-quality data foundation, and
several other internal and external sources can provide essential data with varying quality. Methods: The proposed
AI model builds upon the Weighted Dynamic Corridor Price Optimisation framework, which integrates cost-plus
and value-based pricing methodologies within a non-linear price corridor bounded by lower and upper thresholds.
In the context of supply chain integration, fully-cooperative pricing models can apply Nash equilibrium to enhance
supply chain profitability, whilst semi-cooperative models mitigate information asymmetry through the principal-
agent theory. The findings from the theoretical analysis of the generic industry- and product-agnostic multi-agentic
AI system suggest the system’s potential capacity for dynamically computing optimal prices. A generative AI module
could facilitate real-time decision-making, enabling sales teams and similar stakeholders to simulate scenarios and
refine pricing strategies. In conclusion, the proposed AI system should be capable of delivering adaptive, context-
aware, and data-driven recommendations. Depending on its application, the AI system could become very complex,
susceptible to errors, and require significant maintenance. Future research should focus on customising the proposed
AI system for specific industries and product categories and validating its applicability through empirical research.
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1 Introduction

Determining the optimal price is vital for maximising profit and maintaining competitiveness. Dynamic
pricing based on empirical data involves complex calculations due to variables such as production costs,
competitor prices, market demand, and elasticity. The absence of artificial intelligence (AI) tools capable of
real-time dynamic pricing presents an opportunity to develop systems that function as negotiation advisors.
These systems integrate live data, analyse price impacts interactively, and provide tailored strategies that
outperform static algorithms.

1.1 Context Framework

We propose a high-level, generic AI framework that is currently industry- and product-agnostic, aiming to
establish a foundation for further empirical research and detailed testing, given the limited research at the
intersection of business administration, price calculation, and AI.

The proposed AI model for price optimisation is not an isolated system but a core component of a
central corporate AI infrastructure. This infrastructure, embedded within a company’s broader Enterprise
Information System (EIS), operates as an integral part of the supply chain management process. The AI
model interacts with other specialised AI agents (e.g., marketing, compliance, or strategy agents) to enable
seamless communication, task delegation, and decision-making.

The central corporate AI system ensures that pricing decisions are aligned with real-time market condi-
tions, corporate objectives, and supply chain dynamics. Figure 1 illustrates the structural positioning and
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integration of the AI pricing model within the enterprise and supply chain context, indicating its interactions
with other AI agents and business entities.

Fig. 1 Positioning of the Price Optimisation AI Agent within the context of the central enterprise AI and a supply chain.

The generic multi-agent AI framework builds on the Weighted Dynamic Corridor Price Optimisation
(WDCP) model, proposed by Stromeyer and Kurz in their study [50], which combines cost-plus and
value-based approaches within a non-linear pricing corridor.

The lower boundary is determined by production costs, including fixed cost degression and economies
of scale, while the upper boundary incorporates market demand elasticity, competitor prices, customer
willingness-to-pay, and psychological pricing thresholds. The WDCP framework models two interdependent
price-demand functions: internal orientated functions reflecting, for example, cost behaviour based on pro-
duction levels and market orientated functions analysing, for example, the relationship between price points
and customer demand. The proposed AI calculates the optimum price floor based on this framework and
processes empirical data from production systems, market analytics, and customer platforms to dynam-
ically determine optimal prices. It includes a generative AI module that enables interactive engagement,
allowing, for example, sales teams to simulate pricing scenarios and develop negotiation strategies based on
live data and calculated impacts. While not designed to autonomously set or implement prices, the AI pro-
vides detailed recommendations, leaving final pricing decisions to human users. For this paper, we assume
the deploying company operates a functional Enterprise Resource Planning (ERP) system, ensuring precise
processes and high-quality data for price-related values. Conversely, data quality for other price-influencing
factors, such as market demand or customer behaviour, may be lower due to variability and less structured
collection methods. The WDCP model ultimately aims to maximise profitability, expressed as a function of
price [50]:

Π(P ) = Q(P )× (P − C) +R(Q) (1)

This equation defines profit (Π) as a function of price (P ), where Q(P ) represents the quantity sold as
a function of price, and P − C captures the contribution margin, calculated as the difference between the
selling price (P ) and the unit cost (C). The term R(Q) incorporates volume-based rebates or discounts,
allowing strategic adjustments to align with specific business objectives.
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1.2 Contribution to the Field

This research provides a contribution to the intersection of artificial intelligence and dynamic pricing by
introducing the Weighted Dynamic Corridor Price Optimisation (WDCPO) framework and its integration
into a modular multi-agent AI system. In contrast to existing methodologies that often lack adaptability
to real-time market dynamics or fail to incorporate both cost- and value-based pricing strategies, the pro-
posed framework addresses these limitations through a structured, dual-boundary approach. The primary
contribution lies in the mathematical formalisation of dynamic pricing corridors that account for production
cost degression, economies of scale, customer willingness-to-pay, and market elasticity. Through the integra-
tion of these variables into a unified model, this framework ensures that pricing decisions are aligned with
both profitability and market competitiveness. The study pioneers the application of advanced cooperative
and semi-cooperative pricing frameworks within supply chains, applying Nash equilibrium principles and
principal-agent theory to address inter-organisational dynamics. The development of a multi-agent AI sys-
tem contributes to the field by enabling domain-specific agents to process price related complex datasets in
real time, providing actionable, context-sensitive pricing recommendations. This work also introduces a gen-
erative AI module for interactive negotiation and scenario analysis, offering a significant advancement in the
usability of AI systems for pricing optimisation. The modularity and adaptability of the proposed generic
framework contribute to the foundational taxonomy and ontology of artificial intelligence in multi-agent
systems and its practical applicability across diverse industries, providing a robust foundation for empirical
testing and future customisation.

1.3 Related Work

This research builds upon the Weighted Dynamic Corridor Price Optimisation (WDCPO) framework by
Stromeyer and Kurz [50], which integrates cost-plus and value-based pricing within a dynamic, non-linear
corridor. Previous studies [48, 41] established foundational pricing methods; these lacked adaptability to
real-time dynamics and advanced cooperative frameworks. The WDCPO framework addresses these lim-
itations by incorporating cost degression, economies of scale, market elasticity, psychological factors, and
advanced game-theoretic models. It applies Nash equilibrium to align profitability across supply chains and
principal-agent theory to address information asymmetry. Recent analyses [18, 3] explored artificial intel-
ligence applications in pricing but did not fully integrate these theoretical approaches or utilise real-time
multi-agent systems.

2 Methodology

This research employs a formal discussion approach, grounded in a comprehensive review of existing
literature and the integration of theoretical frameworks. Contributions from peer-reviewed publications,
textbooks, and seminal works are synthesised to construct a conceptual framework for dynamic pric-
ing architecture. Emphasis is placed on formal approaches to ensure mathematical rigour and alignment
with contemporary pricing challenges. The literature review serves as the primary method for identifying,
analysing, and integrating state-of-the-art research findings. Formal studies on cost-based pricing, value-
based pricing, Nash equilibrium, principal-agent theory, non-linear optimisation, and multi-agent systems
are examined to combine established methodologies with innovative AI-driven solutions. Conceptual mod-
els are adapted and extended to reflect real-world applications and current technological capabilities. The
research is inherently theoretical, presenting a structured, generic framework that is relevant to academic
discourse and practical business applications.

3 Research

Prior to designing the proposed AI framework, it is important to comprehend the mathematical foundation
of the pricing model, as this complex theoretical construct necessitates the collection of extensive data
from diverse sources and the application of a comprehensive set of mathematical approaches. The Weighted
Dynamic Corridor Price Optimisation model establishes the foundation for the AI’s architecture, determines
its functionality, and ensures alignment with the model’s objectives. While the pricing model relies heavily on
mathematical equations, it also incorporates qualitative aspects that require advanced reasoning capabilities.
Large Language Models (LLMs) must apply objective-under-constraints frameworks and internal reasoning
to interpret and integrate non-quantitative inputs. This ensures that the AI can account for qualitative
factors, such as customer perceptions, market dynamics, and strategic considerations, which are vital for
generating effective pricing recommendations.
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3.1 Specifying the Lower Boundary of the Pricing Model

We focus first on the lower boundary of the Weighted Dynamic Corridor Price Optimisation model, which
represents the minimum price a company can charge without jeopardising its financial stability. Key com-
ponents to consider include fixed costs, which remain constant regardless of production levels, variable costs
that change with output, and cost degression due to economies of scale [48].

Additional considerations include contribution margins, regulatory constraints such as price floors, and
strategic adjustments like selling below cost for market penetration or key account relationships [38, 14].

These elements collectively define the foundational inputs necessary for constructing a robust lower
boundary. Our assumptions regarding the lower boundary are predicated on the requirement to cover both
fixed and variable costs while accounting for economies of scale, cost degression, and other strategic and
external considerations. Fixed costs, such as rent and salaries, are distributed across the production quantity,
reducing the fixed cost per unit as production scales up. Variable costs, including raw materials and energy,
decrease with economies of scale through bulk purchasing and operational efficiencies. Additional factors
include contribution margins to ensure profitability for each unit sold and external constraints such as legal
price floors or minimum wage regulations.

Strategic adjustments, including selling at a loss for key accounts or market penetration, and quality
considerations, such as maintaining perceived value thresholds, are essential. Brand reputation plays a
role in ensuring the minimum price aligns with customers’ expectations of quality and trust in the brand.
This encompasses the influence of OEM suppliers, whose reliability and integration into the value chain
impact brand image and pricing strategies. Market-specific factors, including competitor pricing, customer
price sensitivity, inventory management, and regulatory compliance, are also integrated into the framework.
Collectively, these components form a dynamic foundation for determining the lower boundary in the pricing
corridor, expressed as:

Pmin =
FC

Q
+

m∑
j=1

(V Cj · uj) + S +Rmin + Cneg +M +B (2)

where Pmin is the minimum price per unit, FC represents the total fixed costs, Q is the quantity produced,
V Cj denotes the variable cost of the j-th factor (e.g., raw materials, energy), and uj is the usage of the
j-th factor per unit. S accounts for strategic slack or adjustments (e.g., for market penetration or key
accounts), Rmin represents regulatory or legal constraints affecting minimum pricing, and Cneg refers to
negative contribution margin allowances for strategic purposes. M encompasses market considerations (e.g.,
perceived value thresholds, competitor benchmarks), and B captures the brand value component, reflecting
the minimum price necessary to maintain perceived quality and avoid brand dilution.

To further refine the lower boundary, we incorporate time-dependent and non-linear aspects that
reflect the dynamic nature of costs and market conditions. Fixed costs may vary over time due to lease
renewals, maintenance expenses, or depreciation schedules, necessitating their modelling as time-dependent
components [48].

Variable costs, such as raw materials and energy, fluctuate with supply chain conditions, market trends,
and currency exchange rates, which can also be represented dynamically [38].

Over time, production processes often benefit from efficiency gains, following learning curve effects that
reduce variable costs through technological advancements and improved resource utilisation [14].

Historical and forecasted data can enhance accuracy by identifying seasonality and long-term trends,
while customer demand elasticity, influenced by time-sensitive factors such as brand perception or competing
offers, necessitates the integration of dynamic price-quantity relationships [27]. External economic indicators
such as inflation and interest rates directly affect both fixed and variable costs, reinforcing the importance
of real-time adjustments [16]. These enhancements provide a foundation for a dynamic model that extends
the static lower boundary into a time-sensitive and adaptable framework. To capture the dynamic and time-
sensitive aspects of the lower boundary, we refine its mathematical representation. Fixed costs, which may
vary over time due to periodic changes such as lease renewals or depreciation schedules, are expressed as a
time-dependent function:

FC(t) = Fixed Costs Over Time (3)

Variable costs are similarly modelled as a time-dependent function to account for fluctuations resulting from
supply chain dynamics, market trends, or currency exchange rates:

V Cj(t) = Variable Costs Over Time for the j-th Factor (4)
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Incorporating economies of scale and learning curve effects, we express the variable cost per unit as:

V C(Q, t) = V Cbase ·
(
1− β

Q(t)n

)
(5)

Here, Q(t) represents the quantity produced at time t, β is the bulk discount factor, and n captures non-linear
cost degression effects. This formulation dynamically adjusts variable costs to reflect improved efficiencies
over time. To incorporate historical trends and forecasted data, we introduce a time-series function that
refines costs based on seasonal or long-term patterns:

Pmin(t) =
FC(t)

Q(t)
+

m∑
j=1

(V Cj(t) · uj) + S(t) +Rmin + Cneg +M(t) +B (6)

This equation integrates time-dependent fixed and variable costs, strategic adjustments over time (S(t)),
and external economic factors such as inflation, represented within M(t). The inclusion of B ensures the
minimum price maintains brand value, aligning with perceived quality and trust. To understand how the
lower boundary evolves dynamically over time, we can express it as a differential equation. This approach
shows the time sensitivity of cost components and strategic adjustments, which are important for an AI
framework to adapt in real time.

dPmin

dt
=

dFC(t)

dt
· 1

Q(t)
− FC(t)

Q(t)2
· dQ(t)

dt

+

m∑
j=1

(
dV Cj(t)

dt
· uj

)
+

dS(t)

dt
+

dM(t)

dt
+

dB(t)

dt

(7)

Here, dPmin
dt represents the rate of change of the minimum price over time, dFC(t)

dt captures changes in fixed

costs over time (e.g., lease or depreciation changes), and
dV Cj(t)

dt reflects changes in variable costs (e.g.,

raw material fluctuations). dQ(t)
dt denotes changes in production volume over time, while dS(t)

dt represents

strategic adjustments, such as responding to market shifts. dM(t)
dt accounts for market-related considerations,

including inflation or competitive pricing trends, and dB(t)
dt represents brand adjustments, such as shifts

in brand perception or quality considerations. The term uj serves as the proportional weighting factor
for the j-th variable cost component, and m is the number of variable cost components. The differential
approach provides a dynamic framework to model the evolution of the lower boundary over time by capturing
the temporal changes in fixed costs, variable costs, production volume, market adjustments, and brand
considerations.

3.2 Specifying the Upper Boundary of the Pricing Model

The Weighted Dynamic Corridor Price Optimisation framework proposes an approach for constructing the
upper boundary, taking into account market demand elasticity, customer willingness-to-pay, and psycholog-
ical pricing thresholds. These factors encompass both quantitative components, such as competitive pricing
and product differentiation, and qualitative factors, such as brand perception and consumer psychology.

In contrast to static algorithms, these qualitative aspects necessitate advanced AI systems, particu-
larly large language models (LLMs), to process and integrate non-linear, subjective inputs by interpreting
qualitative data alongside quantitative variables. The upper boundary of the pricing corridor is influenced
by several key components. Market demand elasticity measures how price changes affect demand, provid-
ing an upper constraint to prevent significant decreases in sales volume [48]. Customer willingness-to-pay
(WTP) represents the maximum price perceived as fair or acceptable, based on the product’s value and
market alternatives [41]. Chen et al [10] found that AI-initiated pricing increases consumer repurchase and
recommendation behaviours, reduces complaints and switching, is mediated by ethical perceptions, and
is negatively influenced by perceived enterprise control. Psychological pricing thresholds, such as round
numbers or prestige pricing, influence buyer decisions by applying cognitive biases [14].

Brand perception further impacts the upper boundary, as strong brands associated with trust and quality
can justify higher prices [27]. Competitive pricing defines the range within which a product must compete,
especially in markets where substitutes are readily available. Product differentiation, through unique fea-
tures or innovations, allows firms to extend the upper boundary beyond the competition [16]. The position
of a product in its market lifecycle also matters, with pricing flexibility expanding for innovative products
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and narrowing for mature or saturated ones. Dynamic and qualitative market factors, such as customer sen-
timent or behavioural trends sourced from social media or reviews, require interpretation through advanced
AI systems, making these qualitative aspects particularly suitable for LLMs that can synthesise diverse
inputs. Emerging studies discuss the importance of real-time adaptability in pricing. Sanchez-Cartas and
Katsamakas [47] demonstrate how AI-driven systems can account for platform competition and network
effects to optimise pricing strategies. Neubert [43] highlight the role of dynamic pricing systems in iden-
tifying trends and patterns across global markets. Gerpott and Berends [18] examine the interdisciplinary
nature of pricing decisions, integrating perspectives from economics, marketing, and behavioural science.
Building on these components, the upper boundary of the pricing corridor is mathematically expressed to
capture market-driven, psychological, and competitive factors that influence the maximum price a company
can charge:

Pmax =
(
a− α ·Q1/n

)
·
(
1 + T · V

)
+WTP (8)

Here, Pmax represents the maximum price per unit, a denotes the maximum potential demand or price ceiling,
and α is the demand sensitivity factor, indicating how demand changes with price. The term Q1/n captures
non-linear elasticity, where n is the elasticity exponent. T accounts for the technological adjustment factor,
reflecting innovation or obsolescence, while V represents the market differentiation factor, which includes
brand strength or unique value. WTP stands for willingness-to-pay, which is the maximum price customers
perceive as fair or acceptable based on the perceived value of the product.

This equation expresses the maximum price (Pmax) a company could charge, determined by a combination
of market-driven factors such as demand elasticity and technological adjustments, along with qualitative
inputs like market differentiation and customer willingness-to-pay (WTP ). In practical application, it can
be used to dynamically assess pricing strategies, enabling businesses to optimise their price ceilings based
on real-time data, customer insights, and competitive conditions.

The term Q1/n, referred to as the non-linear elasticity term, models how demand (Q) responds to price
changes in a non-linear manner. The parameter n, known as the elasticity exponent, determines the degree of
sensitivity of demand to price fluctuations, allowing for greater flexibility in representing market behaviours
compared to linear elasticity models. When n > 1, the relationship between price and demand is less sensitive
(inelastic), indicating that changes in price lead to smaller proportional changes in demand. Conversely,
when n < 1, demand becomes highly sensitive (elastic), meaning small price changes result in significant
shifts in demand (Simon and Fassnacht, 2016). Identifying the elasticity exponent (n) in a market requires
analysing historical pricing and sales data.

Advanced statistical methods, such as regression analysis, can estimate how quantity demanded responds
to variations in price over time. Experimental pricing strategies, such as A/B testing with different price
points, can provide insights into elasticity by observing customer behaviour in controlled environments.
For markets with complex demand patterns, machine learning models may be employed to elucidate non-
linear relationships between price and demand. This flexibility in capturing non-linear dynamics renders the
elasticity term crucial for accurately defining the upper boundary in dynamic pricing models. Willingness-
to-pay (WTP) refers to the maximum price a customer perceives as fair or acceptable for a product or
service, reflecting its perceived value. This concept is influenced by various interrelated factors. The utility
and functionality of a product play a critical role, as consumers demonstrate a higher propensity to pay
increased prices for products that meet their needs effectively or offer superior features. Products with unique
attributes or advanced customisation options tend to command higher WTP [49]. Brand perception and
trust significantly influence WTP. Customers associate strong, reputable brands with quality and reliability,
enabling companies with high brand equity to justify premium pricing [30]. Social influences also contribute
to WTP, particularly for products that serve as status symbols or align with social acceptance. Luxury
goods and exclusive brands, for example, are often purchased not only for their functional value but also
for their ability to convey social recognition and prestige [23]. Emotional connections further elevate WTP
by creating perceived value beyond a product’s functional benefits. Brands that resonate emotionally with
consumers, either through compelling narratives or alignment with personal values, can increase perceived
worth and therefore WTP [51].

The association between price and quality is another important factor. Consumers often infer higher
quality from higher prices, especially in cases where quality is difficult to evaluate before purchase. This
association can lead to a higher WTP for products perceived as premium or high-quality offerings [39].

Cultural and psychological factors also shape WTP. For example, in collectivist cultures, social accep-
tance and group preferences often play a significant role in pricing perceptions, whereas individualistic
cultures might emphasise personal utility and unique value [25]. The economic context, including disposable
income levels and economic stability, heavily influences WTP. During periods of economic growth, consumers
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may attribute higher value to aspirational or luxury products, whereas economic downturns tend to lower
perceived value due to reduced purchasing power [2].

To account for the dynamic nature of the upper boundary, we introduce time-dependence into the model.
This allows for adjustments based on real-time market changes, customer behaviour, and evolving economic
and technological factors. The time-dependent upper boundary is expressed as:

Pmax(t) =
(
a(t)− α(t) ·Q(t)1/n

)
·
(
1 + T (t) · V (t)

)
+WTP (t) (9)

Here, Pmax(t) represents the maximum price per unit at time t, a(t) denotes the maximum potential demand
or price ceiling over time, and α(t) is the demand sensitivity factor varying with market dynamics. The term

Q(t)1/n reflects the non-linear elasticity term, capturing demand-price sensitivity over time. T (t) accounts
for the technological adjustment factor, representing innovation or obsolescence trends, while V (t) represents
the market differentiation factor, which evolves with brand strength or unique features over time. WTP (t)
stands for willingness-to-pay, dynamically adjusting with perceived value, economic factors, and consumer
sentiment.

The dynamic changes in the upper boundary can be captured with a differential equation:

dPmax

dt
=

da(t)

dt
− dα(t)

dt
·Q(t)1/n − α(t)

n ·Q(t)1−1/n
· dQ(t)

dt

+
dT (t)

dt
· V (t) + T (t) · dV (t)

dt
+

dWTP (t)

dt

(10)

Here, dPmax
dt represents the change in the maximum price over time, da(t)

dt captures the change in poten-

tial demand or price ceiling over time, and dα(t)
dt reflects the change in demand sensitivity due to market

conditions. The term dQ(t)
dt denotes the change in quantity demanded over time, while dT (t)

dt accounts

for technological advancements or obsolescence effects. Additionally, dV (t)
dt represents changes in market

differentiation, such as brand value or competitive positioning, and dWTP (t)
dt describes adjustments in

willingness-to-pay based on perceived value or economic trends. These equations for the upper boundary are
essential for dynamically accounting for both quantitative factors, such as market elasticity and demand,
and qualitative factors, such as psychological pricing thresholds and brand perception, which evolve over
time. Traditional fixed algorithms lack the capacity to interpret qualitative and non-linear data, rendering
advanced AI systems, particularly LLMs, relevant for integrating subjective inputs and real-time market
changes into precise pricing strategies.

3.3 Specifying the Optimal Price Function

To determine the optimum price within the defined corridor of upper and lower boundaries, we incorporate
key variables including profit margin, boundary weighting, demand elasticity, negotiation flexibility, real-time
market data, and psychological factors. Consequently, we balance profitability, competitiveness, and market
dynamics by dynamically integrating these variables. We commence with the market and competitive view,
which considers the influence of market leaders, low-cost competitors, and other market-specific factors, and
is expressed as:

Pcompetitive = Ws · Pleaders + (1−Ws) · Plow-end + wt · Tm + wp · Pcustomer + we · Em (11)

Here, Pcompetitive represents the competitive price dynamically positioned between market leaders and low-
cost competitors. Ws is the strategy weight (0 ≤ Ws ≤ 1), determined by the company: Ws = 1 means
fully aligned with market leader pricing, while Ws = 0 means fully aligned with low-cost competitors.
Pleaders denotes the average price of the top two market leaders, and Plow-end represents the average price of
low-cost competitors (value players). The term wt is the weight assigned to market trends, and Tm is the
market trend index capturing seasonal demand or macroeconomic shifts. wp represents the weight assigned
to customer preferences, while Pcustomer reflects customer-driven price insights derived from historical data
or segmentation. Lastly, we is the weight assigned to economic and purchasing power adjustments, and Em is
the market-specific economic index reflecting factors such as purchasing power parity (PPP), local currency
value, and cost of living.

This equation calculates Pcompetitive, a dynamic competitive price positioned between market leaders and
low-cost competitors, while incorporating market trends, customer preferences, and economic adjustments
to reflect both local and global pricing dynamics. The inclusion of Em enables companies to adapt their
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pricing strategies for international markets by accounting for factors such as purchasing power parity, local
currency value, and cost of living, ensuring alignment with regional market conditions. Real-time market data
captures dynamic external factors that influence pricing decisions, such as exchange-traded prices, supply
chain conditions, demand fluctuations, and currency exchange rates. These components are important to
ensure that pricing strategies remain responsive to market shifts, align with customer purchasing power, and
reflect competitive and economic realities. This dynamic adjustment factor can be expressed in the following
equation:

Dm = Pcompetitive + we · Pexchange + ws · Sc +wd ·Df + wfx · Fx+ wi · Ei

+ wc · Cp + wsm · Sm + wr ·Rp
(12)

Here, Dm represents the real-time market data adjustment factor, while Pcompetitive denotes the dynamic
price positioned between market leaders and low-cost competitors. Pexchange reflects live prices from com-
modity exchanges or other regulated pricing sources, and Sc captures supply chain data, including costs or
disruptions. The term Df represents demand fluctuations derived from sales systems or forecasts, and Fx

accounts for currency exchange rates impacting international pricing. Ei includes economic indicators such
as inflation or GDP trends, whereas Cp highlights competitor promotions or tactical discounts. Sm captures
social media sentiment or consumer feedback, and Rp reflects regulatory or political changes affecting pric-
ing. The equation uses weighted components to combine multiple diverse real-time data sources into a single
adjustment factor, Dm. Each data source, such as competitor prices, exchange rates, or demand fluctuations,
contributes differently to pricing decisions based on the product, market context, or business goals. The
weights, represented by wx, determine the relative influence of each component on Dm, enabling flexibility
and adaptability. For instance, in the case of commodities with fixed exchange prices, the weight assigned
to Pexchange (e.g., we) may dominate, while the weight for competitor promotions (wc) might be negligible.
Conversely, in consumer goods markets where competition is more intense, Pcompetitive and Cp may carry
greater weights, reflecting their relevance to tactical pricing. The output of Dm is not a specific price but an
adjustment factor that modifies the final price calculation to account for real-time external market condi-
tions. This ensures the pricing strategy dynamically aligns with competitive, economic, and customer-related
factors. For example, if competitor promotions are prominent, Dm may result in a downward adjustment
to maintain competitiveness. Alternatively, a rise in exchange rates may cause Dm to increase the price for
international markets, ensuring profitability is preserved despite cost fluctuations.

This dynamic adjustment ensures the pricing remains contextually relevant and strategically aligned.
While it is straightforward to define these variables theoretically, their real-world application is highly com-
plex, requiring data from diverse and often unstructured sources. This is where AI, particularly advanced
systems like large language models (LLMs), excels by synthesising information from disparate APIs,
databases, and real-time inputs. Unlike static algorithms, which are limited to predefined rules, AI dynam-
ically processes and integrates qualitative and quantitative data, enabling context-aware adjustments that
traditional methods cannot achieve.

To construct a comprehensive pricing equation that incorporates all six variables, we combine real-time
market data (Dm), profit margin (Mp), boundary weighting (Wmin,Wmax), demand elasticity adjustment
(Ed), negotiation flexibility (Kn), and psychological factors (Ps). We also integrate a strategic slack variable
(Sk) to account for key account adjustments, allowing flexibility in pricing for strategic clients where a long-
term partnership is prioritised over immediate profit margins. This ensures the equation is adaptable to
different scenarios, optimisable for objectives like profit maximisation, and flexible under constraints such
as upper (Pmax) and lower (Pmin) boundaries.

The optimal price can be expressed as a dynamic function that integrates all relevant variables while
remaining constrained by the upper (Pmax) and lower (Pmin) boundaries:

Poptimal = Wmin · Pmin +Wmax · Pmax +Mp +Dm + Ed + Ps +Kn + Sk (13)

Here, Poptimal represents the calculated optimal price, while Pmin and Pmax denote the lower and upper price
boundaries, respectively. Wmin and Wmax are the boundary weighting factors, balancing cost recovery and
value capture. Mp reflects the minimum profit margin or desired markup, and Dm is the real-time market
data adjustment factor, incorporating competitive prices, market trends, and economic conditions. The term
Ed accounts for demand elasticity adjustment, optimising volume and revenue based on price sensitivity,
while Ps captures psychological factors, such as pricing thresholds or perceived value effects. Kn represents
negotiation flexibility, allowing for discounts or strategic adjustments, and Sk provides strategic slack for
key accounts, enabling price adjustments for long-term partnerships or high-priority clients.
This equation is designed to be used as an objective function for profit maximisation while ensuring con-
straints from Pmin and Pmax are respected. The flexibility introduced by Sk, Kn, and Dm makes it adaptable
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to real-time conditions and strategic priorities, constituting a feasible framework for AI-driven pricing opti-
misation. To introduce time sensitivity, we can model the optimal price (Poptimal) as a time-dependent
function:

Poptimal(t) = Wmin(t) · Pmin(t) +Wmax(t) · Pmax(t)

+Mp(t) +Dm(t) + Ed(t) + Ps(t) +Kn(t) + Sk(t)
(14)

To capture how Poptimal(t) evolves over time, we can calculate its time derivative:

dPoptimal(t)

dt
=

d

dt

(
Wmin(t) · Pmin(t) +Wmax(t) · Pmax(t)

+Mp(t) +Dm(t) + Ed(t) + Ps(t) +Kn(t) + Sk(t)
) (15)

Here,
dPoptimal(t)

dt represents the changes in the optimal price over time, while dWmin(t)
dt and dWmax(t)

dt denote

the changes in weighting factors for the lower and upper boundaries, respectively.
dMp(t)

dt captures changes

in cost structures, such as raw material costs or supply chain delays, and dDm(t)
dt reflects real-time market

fluctuations, including competitor promotions and exchange rates. The term dEd(t)
dt accounts for demand

elasticity shifts due to seasonal or economic factors, while dPs(t)
dt represents changes in psychological factors

influencing perceived value. dKn(t)
dt highlights strategic decisions evolving over time, such as renegotiation

of key account terms, and dSk(t)
dt addresses adjustments for strategic slack variables over time. This time-

dependent formulation of Poptimal(t) is important for capturing dynamic changes in pricing influenced by
evolving cost structures (Pmin(t)), market conditions (Dm(t)), and strategic adjustments (Sk(t)). Integrating
these variables, the model ensures that pricing decisions remain adaptive to real-time fluctuations, providing
businesses with a framework to optimise profitability under shifting economic and market constraints.

3.4 Specifying the Profit Maximisation Objective

Having established the lower boundary, upper boundary, and the methodology for determining the optimal
price (Poptimal) within the pricing corridor, the next step is to formalise the profit maximisation objective.
This is important for ensuring that the calculated price aligns with profitability goals while adhering to the
constraints defined by the pricing corridor. The model adapts to real-time conditions and strategic business
priorities by integrating dynamic market and cost factors.
To maximise total profit (Π), the objective function is expressed as:

max
Poptimal

Π(Poptimal) = Q(Poptimal) · (Poptimal − C(Q))−R(Q)

subject to: Pmin ≤ Poptimal ≤ Pmax

(16)

Here, Π(Poptimal) represents the total profit as a function of the optimal price, while Q(Poptimal) denotes the
sales quantity as a function of the price. Poptimal is the calculated optimal price within the pricing corridor.
The term C(Q) represents the cost function, capturing total costs as a function of quantity produced, and
R(Q) accounts for rebates or discounts applied based on volume.

This formulation provides the mathematical foundation for deriving the optimal price that maximises
profit, ensuring that all constraints and real-world complexities, such as demand elasticity and cost dynamics,
are effectively integrated into the decision-making process. In practice, the artificial intelligence system
would iteratively solve this optimisation problem by extracting real-time data, recalculating the price, and
providing actionable recommendations to decision-makers. This approach would yield a dynamically updated
”optimal price” based on current conditions and strategic objectives. When implemented effectively, this
framework renders the pricing process both data-driven and strategic, facilitating informed decision-making
while maximising profitability.

3.5 Specifying the AI-Driven Fully Cooperative Price Equilibrium Framework

In a fully cooperative setting where participants in a supply chain or business collaboration are willing to
freely exchange relevant information, we propose a novel application of the Nash equilibrium—an aspect
of game theory—to optimise pricing strategies within cooperative supply chains. Traditionally, the Nash
equilibrium has been utilised to model strategic interactions where no participant can improve their outcome
unilaterally [42, 19, 40]. Applying this concept to real-time supply chain management has been limited
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due to the complexity and volume of data involved. For human decision-makers, processing such data and
simultaneously optimising outcomes across multiple stakeholders is not feasible. With advancements in
AI, particularly in large language models (LLMs) combined with mathematical optimisation techniques, it
becomes possible to dynamically compute Nash equilibrium solutions in real-world supply chain scenarios.
This framework utilises the AI’s capacity to handle vast and diverse datasets, integrating real-time market
data, production costs, customer preferences, and competitive factors across multiple parties in the supply
chain. The AI can identify equilibrium prices that maximise collective profitability while balancing individual
constraints, such as minimum profit margins and strategic priorities. Incorporating fairness constraints into
dynamic pricing strategies, Bérczi et al [6] explore how dynamic pricing strategies in unit-demand markets
can maintain global envy-freeness across various time perspectives, developing algorithms that achieve envy-
free optimal dynamic prices for social welfare maximisation, though highlighting the complexity of such tasks
for revenue maximisation. These approaches align with the framework’s objective of maximising collective
profitability while respecting individual constraints. The approach redefines supply chain optimisation by
allowing entities to cooperate more effectively, even in highly complex environments. Unlike traditional static
models, which focus solely on localised decision-making, AI-driven frameworks enable real-time adjustments,
ensuring that all parties benefit from shared optimisation goals. A generic form of a Nash equilibrium can
be expressed as:

Ui(P
∗
i , P

∗
−i) ≥ Ui(Pi, P

∗
−i), ∀Pi, ∀i (17)

Here, Ui represents the utility or payoff function of participant i, while P ∗
i denotes the strategy (e.g.,

price or decision) of participant i at equilibrium. P ∗
−i captures the strategies of all other participants except

i at equilibrium, and Pi represents any alternative strategy for participant i. The inequality ensures that
no participant can improve their utility by unilaterally changing their strategy at equilibrium. We propose
the AI-Driven Fully Cooperative Price Equilibrium Framework (AI-FCPEF), wherein two or more AI sys-
tems (or a single integrated AI) negotiate and optimise prices within a supply chain to identify a Nash
equilibrium that maximises collective profitability. In contrast to traditional scenarios, where companies
independently optimise prices using adversarial strategies, this framework facilitates cooperative negotiation
to achieve individual price optima while maintaining a supply-chain-wide strategic optimum. The integration
of real-time data, strategic priorities, and profitability constraints enables the AI systems to establish pricing
that balances mutual benefits and supports long-term collaboration. This approach redefines Nash equilib-
rium applications, shifting from individual profit maximisation to cooperative optimisation, leveraging AI’s
capacity to process vast datasets and adapt to dynamic conditions in real time.

The Generic AI-Driven Fully Cooperative Price Equilibrium Framework (AI-FCPEF) can be expressed
as:

max
P ∗
1 ,P

∗
2

[
U1(P

∗
1 , P

∗
2 ) + U2(P

∗
1 , P

∗
2 )
]

subject to: Ui(P
∗
i , P

∗
−i) ≥ Ui(Pi, P

∗
−i) ∀Pi,∀i (18)

Here, P ∗
1 and P ∗

2 represent the optimal prices for company 1 and company 2, respectively. Ui(P
∗
i , P

∗
−i) denotes

the utility or profit function of company i when using the optimal price P ∗
i and considering the pricing

strategy of the other company P ∗
−i. The term P ∗

−i captures the pricing strategy of the other company in
relation to company i at equilibrium. Finally, Ui(Pi, P

∗
−i) represents the utility or profit function of company

i when using an alternative price Pi, while the other company maintains its equilibrium strategy P ∗
−i.

The inequality ensures that no company can unilaterally improve its profit by altering its price while the
other company maintains its optimal pricing strategy. To explicitly incorporate the profit functions of both
companies (16) into the cooperative Nash equilibrium, the equation becomes:

max
P ∗
1 ,P

∗
2

[
Q1(P

∗
1 ) · (P ∗

1 − C1(Q1))−R1(Q1) +Wmin,1 · Pmin,1 +Wmax,1 · Pmax,1

+Dm,1 + Sk,1

+Q2(P
∗
2 ) · (P ∗

2 − C2(Q2))−R2(Q2) +Wmin,2 · Pmin,2 +Wmax,2 · Pmax,2

+Dm,2 + Sk,2

]
subject to: Pmin,1 ≤ P ∗

1 ≤ Pmax,1, Pmin,2 ≤ P ∗
2 ≤ Pmax,2

(19)

Here, P ∗
1 and P ∗

2 are the optimised prices for company 1 and company 2, respectively. Q1(P
∗
1 ) and Q2(P

∗
2 )

represent the sales quantities as functions of their respective prices, while C1(Q1) and C2(Q2) are the cost
functions for each company based on their sales quantities. R1(Q1) and R2(Q2) denote rebates or discounts
applied based on volume for each company. The terms Wmin,1, Wmax,1, Wmin,2, and Wmax,2 are the weighting
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factors for upper and lower boundaries, and Pmin,1, Pmax,1, Pmin,2, Pmax,2 denote the lower and upper price
boundaries for each company. Dm,1 and Dm,2 are the real-time market data adjustments, and Sk,1 and Sk,2

represent strategic slack variables for key accounts or priority clients.
This equation combines the previously developed individual profit functions (16) into a single cooperative

framework. The AI system can optimise both (or more) functions simultaneously while ensuring that indi-
vidual constraints are maintained. This approach can be extended across the entire supply chain, enabling
all participating companies to collaboratively optimise their pricing strategies through the AI-Driven Fully
Cooperative Price Equilibrium Framework (AI-FCPEF).Treating the supply chain as a unified entity, the
framework dynamically aligns individual prices with strategic objectives, such as increasing market share or
achieving market leadership. Companies may also adjust margins at specific points in the supply chain to
support collective advantages, such as entering new markets or strengthening competitive positioning.

3.6 Specifying the AI-Driven Semi-Cooperative Price Equilibrium Framework

In a semi-cooperative setting, participants engage in business transactions while withholding critical pro-
prietary information. This necessitates an alternative approach where optimisation occurs under partial
information constraints. Principal-agent theory offers a suitable foundation for addressing such scenarios. It
models interactions where one party (the principal) delegates tasks to another (the agent) while managing
information asymmetry and accounting for risk aversion [15, 32].

In the context of semi-cooperative supply chains, this theory can guide the development of pricing
mechanisms by aligning incentives between parties through structured contracts. These contracts adaptively
balance individual utilities and risks, allowing for effective optimisation despite limited information sharing
[26]. An AI system specialised in semi-cooperative frameworks can estimate missing information and reason
under uncertainty to address information gaps. It applies principal-agent theory models to compute pricing
strategies that align incentives and approach the optimum price in this constrained setting. The principal-
agent problem is typically modelled as [32]:

max
a

E[Up(a, s)] subject to: E[Ua(a, s)] ≥ Umin
a (20)

Here, a represents the agent’s action or decision variable, and s denotes the state of nature or external factors
influencing outcomes. Up is the utility function of the principal, which depends on the agent’s action and the
state of nature, while Ua represents the utility function of the agent, dependent on their action and the state
of nature. The term Umin

a reflects the agent’s minimum acceptable utility, encapsulating their participation
constraint. Finally, E is the expectation operator, accounting for uncertainty in the state of nature.
To transition this framework into the AI-Driven Semi-Cooperative Price Equilibrium Framework (AI-
SCPEF), the optimisation problem incorporates specific variables and constraints relevant to semi-
cooperative supply chains. The principal (buyer) aims to maximise utility, defined by the value obtained
from purchasing goods or services from the agent (seller) at an optimised price, Poptimal, principal. This price
must remain within a dynamic corridor defined by a lower boundary, Pmin, agent, and an upper boundary,
Pmax, agent, reflecting the agent’s cost structures, competitive dynamics, and market conditions.

Up = V (Q)−Q · Poptimal, principal (21)

where V (Q) represents the value derived by the principal from the quantity purchased, andQ·Poptimal, principal

reflects the expenditure on the transaction. The agent’s utility function captures their profit and is defined
as:

Ua = Q(Poptimal, agent) ·
(
Poptimal, agent − C(Q)

)
−R(Q) + Sk (22)

where Poptimal, agent is the price the seller receives, C(Q) represents production costs, R(Q) accounts for
volume-based rebates or discounts, and Sk introduces strategic slack for priority clients. To ensure alignment
and participation, the agent’s price, Poptimal, agent, must also satisfy the buyer’s constraints. The optimisation
problem for the entire system, incorporating principal-agent interactions, is formalised as:

max
Poptimal

E
[
V (Q)−Q · Poptimal, principal

]
subject to: E

[
Q(Poptimal, agent) ·

(
Poptimal, agent − C(Q)

)
−R(Q) + Sk

]
≥ Umin

a

(23)

Equation (23) integrates real-time market adjustments (Dm), demand elasticity (Ed), and strategic factors
(Sk) to calculate an optimised price across the supply chain. The AI system inherently processes this data,
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reducing the need for assumptions and enabling precise optimisation. Within a fully integrated multi-agent
system, this framework creates a chain of optimised prices across all levels of the supply chain. Each trans-
action, from one company to another, aligns individual objectives with collective goals, ensuring that the
principal-agent relationships are both efficient and strategically aligned.

3.7 Specifying the AI Architecture for Dynamic Pricing Using Multi-Agent Systems

The Weighted Dynamic Corridor Price Optimisation (WDCPO) model we propose would benefit from
implementation through a dedicated AI system that is owned, trained, and fully accessible by the company.
This recommendation does not pertain to hosting decisions, such as whether the system resides on in-house
servers or in the cloud, but rather to ensuring complete ownership and control of the AI.

Such ownership addresses the complexity of the model, the sensitive nature of the data involved, and the
need for compliance with data protection regulations and legal frameworks. It also ensures that intellectual
property and trade secrets remain secure, which would otherwise be challenging to guarantee with external
AI solutions. While this is one possible approach, decision-makers should carefully evaluate the trade-offs
between external and internal implementations.

The WDCPO model requires extensive, continuous real-time API calls to process dynamic data effi-
ciently. Centralised AI systems, particularly single-instance models, face significant performance limitations
due to synchronous API execution, where each call blocks further processing until a response is received.
Sequential execution introduces delays and restricts scalability, rendering such systems unsuitable for han-
dling the volume and frequency of real-time data required for dynamic pricing. While asynchronous methods,
such as those presented in AsyncLM [20], reduce latency by overlapping API interactions, their implemen-
tation within monolithic architectures remains limited. These systems require retraining the entire model
for updates, resulting in high time and operational costs.

Distributed frameworks such as Pathways [4] demonstrate the effectiveness of asynchronous distributed
dataflow and task scheduling across thousands of accelerators, utilising techniques such as sharded dataflow
graphs and asynchronous gang-scheduling to substantially enhance the management and execution of com-
plex machine learning operations. Asseman et al [3] apply game theory to optimise dynamic pricing in a
multi-agent blockchain environment, addressing a game with imperfect information and harmonising diverse
incentives to enhance economic outcomes. Their model facilitates revenue optimisation through real-time
identification of consumer budgets, underpinning adaptive, data-driven pricing strategies within a blockchain
protocol. When applied to complex, multi-functional pricing models, single-instance AI structures lack the
modularity needed to integrate such methods effectively.

We propose a multi-agent AI system that incorporates an objective-under-constraints framework for each
agent. This configuration allows specialised agents to operate independently with clear and focused objec-
tives and constraints. A centralised AI attempting to handle diverse objective-under-constraints frameworks
simultaneously would likely encounter inefficiencies and conflicts due to the complexity of managing such
varied tasks within a single model. A multi-agent system resolves these issues by distributing tasks among
agents, enabling concurrent execution and improving scalability and efficiency. The modular design further
simplifies updates, as only individual agents need retraining rather than the entire system. This approach
is a key recommendation for meeting the demands of our dynamic pricing model.

We identify two approaches for designing the multi-agent AI system for dynamic pricing: domain-specific
agents and function-specific agents. Domain-specific agents focus on particular areas such as monitoring
customer behaviour, tracking market developments, or analysing competitor activities. These agents align
with human intuition and workflows, facilitating comprehension, maintenance, and fine-tuning. For instance,
a domain-specific agent monitoring competitors would oversee tasks such as tracking product launches,
pricing strategies, and branding activities, enabling human resources to concentrate on clear, domain-specific
outcomes.

Conversely, function-specific agents are designed for individual computational tasks, such as regression
analysis, time-series forecasting, and optimisation routines. While this approach supports highly specialised
operations, it disperses functions across workflows, increasing complexity, coordination challenges, and the
risk of errors. Fine-tuning and updating such systems become challenging as fragmented tasks lack a unified
structure. A domain-specific agent system offers several advantages. It is inherently scalable, as new domains
can be added with minimal impact on existing agents. It simplifies error isolation, as agents operate within
well-defined boundaries, facilitating issue identification and resolution. It also integrates domain knowledge,
allowing industry-specific insights and human expertise to guide agent development.

Domain-specific agents enable parallel training and fine-tuning, avoiding dependency conflicts. The
equations underlying the Weighted Dynamic Corridor Price Optimisation model, particularly its dynamic
upper and lower boundaries and interdependent price-demand functions, are highly complex and designed
generically. In real-world applications, they require extensive modifications to align with an organisation’s
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strategy, product types, and contextual components. A domain-specific agent system is particularly suited
for this purpose, as different industries and product categories demand unique analytical priorities.
For example, monitoring competitors in consumer goods differs significantly from evaluating pricing for
capital goods. Over time, organisations can further optimise results by incorporating or refining agents to
address evolving business requirements. Distributing tasks such as cost analysis, demand forecasting, and
competitor tracking to specialised agents mitigates the risk of errors while enhancing efficiency. These agents
independently process their results, which are subsequently aggregated by a central AI to calculate the
optimal price range.

We also propose that each agent operates within a domain-specific objective-under-constraints frame-
work. This approach would not be feasible in a function-specific system, where fragmented tasks lack
alignment with domain-level goals, further complicating management and optimisation. Recent research sup-
ports our rationale for implementing domain-specific agents in a multi-agent AI system. Calvaresi et al [7]
elucidate the challenges associated with achieving real-time performance in multi-agent systems, attribut-
ing these difficulties to the limitations of conventional agent schedulers, communication middleware, and
negotiation protocols.

These components are not inherently designed to meet the stringent timing constraints necessitated by
safety-critical applications in sectors such as healthcare and automotive industries. Similarly, Condurache
et al [13] propose a framework for dynamic multi-agent systems, emphasising the importance of modular
design for scalability, error isolation, and flexibility, all of which align closely with the benefits of domain-
specific agents. Korbel and Tichý [31] explore dynamic pricing models using multi-agent reinforcement
learning and demonstrate that agents specialising in specific domains improve the flexibility and efficiency
of pricing strategies.

Lu et al [35] further illustrate how multi-agent reinforcement learning can address dynamic pricing
challenges, such as traffic congestion, by assigning clear objectives to agents that adapt to evolving conditions.
Their research supports the notion that domain-specific agents simplify task optimisation and improve
long-term adaptability. Research by Asseman et al [3] explores distributed agent systems, concluding that
fragmenting highly specialised tasks across workflows increases the risk of errors and coordination challenges,
further strengthening the case for domain-specific agents.

3.8 Constructing the Generic Domain-Specific Multi-Agent AI System

We propose the following domain-specific agents for the multi-agent AI system: the Price Optimisation Agent
(a) as the central coordinating AI, the Market Analysis Agent (b), the Cost Tracking Agent (c), the Time-
Series Price Analysis Agent (d), the Corporate Pricing Strategy Agent (e), and the Price Policy Effect Agent
(f). The Corporate Strategy Agent (g) ensures alignment between the Price Optimisation Agent and broader
strategic priorities, such as market expansion, innovation strategies, and long-term profitability goals.

The Market Analysis Agent (b) consists of sub-agents, including the Competitor Price/Product Observer
Agent (b1), the Customer and Client Behaviour Analyst Agent (b2), and the Replacement Product Analyst
Agent (b3). The Cost Tracking Agent (c) has sub-agents, including the Internal Costs Analyst Agent (c1),
the Contract Analyst Agent (c2), and the Supply Chain Analyst Agent (c3).

In practical applications, the specific configuration of the system will be contingent upon the organisation’s
requirements and the nature of the products or services being priced. The internal architecture of each agent
is dependent on the specific task it is designed to perform. It is reasonable to posit that every agent is, or at
minimum should be, equipped with a comprehensive set of state-of-the-art components, including artificial
intelligence algorithms, machine learning models, analytical methods, and generative AI capabilities to fulfil
its assigned role effectively. It is proposed that these agents are not merely background systems delivering
isolated functions. When organisations invest substantial resources into establishing such a system, the
integration of generative AI agents can provide additional utility by enabling human-in-the-loop interaction.
Users can interact with individual agents separately to gain specific insights into the domain knowledge
accumulated by that agent.

3.9 Specifying the Agent-Specific Objective-Under-Constraints Framework

The Price Optimisation Agent (a) applies equations (14), (15), (16) and others to calculate the optimum price
or price corridor based on the Weighted Dynamic Corridor Price Optimisation model. While the equations
provide the mathematical foundation for determining the optimum price, the agent itself operates within a
specific objective-under-constraints framework that governs how these equations are applied. The overarching
objective of the Price Optimisation Agent (a) is to calculate a price that aligns with the company’s strategic
goals as overseen by the Corporate Strategy Agent (g). This ensures that the output remains consistent
with priorities such as profitability targets, market positioning, and innovation strategies. A second critical
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Fig. 2 Generic Domain-Specific Multi-Agent AI System for Price Optimisation

constraint arises from the applied and predefined pricing strategies set by the Corporate Pricing Strategy
Agent (e). The price must comply with the chosen pricing strategy, which reflects the company’s overall
approach to market positioning. If the company applies an international pricing model diversified across
different markets, such as the European, Asian, or other geographically distinct regions, the Corporate
Pricing Strategy Agent (e) ensures that the Price Optimisation Agent (a) adheres to the appropriate strategy
for each market, accounting for regional economic, competitive, and customer-specific conditions. The Price
Optimisation Agent (a) must also operate within legal and regulatory frameworks. The calculated price
must respect external constraints, such as industry regulations and competitive rules, ensuring compliance
and avoiding illegal anti-competitive behaviours, such as predatory pricing. Furthermore, the optimum
price or price corridor must remain bounded within the dynamic upper and lower boundaries implied by
the equations, ensuring both cost coverage and market feasibility. The generic objective-under-constraints
framework for the Price Optimisation Agent (a), including the three generally applicable constraints, can
be expressed as follows:

O(a) : arg max
Poptimal

{Poptimal} (24)

subject to: C1 : Poptimal aligns with strategic objectives set by agent (h),

C2 : Poptimal complies with pricing strategies defined by agent (e),

C3 : Poptimal adheres to legal and competitive constraints,

C4 : Pmin ≤ Poptimal ≤ Pmax,

Cn : Other constraints specific to real-world applications.

The objective defines the core task of the agent, while the constraints ensure that the price calculation aligns
with strategic, applied, and regulatory requirements.

The group of market-oriented agents under the Market Analysis Agent (b): The system is tasked with
continuously monitoring and analysing market developments across various domains. These components
are designed to anticipate the requirements of the Price Optimisation Agent (a) and ensure that the data
and insights they provide are structured, relevant, and readily accessible for seamless integration into the
price calculation process, for example, equation (14). All components operate independently and proactively,
tracking relevant data streams and aggregating information even without direct requests from the Price
Optimisation Agent (a). Their primary function is to extract and process data from a variety of sources
to capture changes in competitor pricing, customer behaviour, and product availability. To ensure the cap-
tured data reflects developments over time, it is proposed that all gathered information is stored in a vector
database with an associated timestamp. The timestamp is essential to enable the components to identify
trends, analyse temporal sequences of events, and understand the evolution of market dynamics. Without
this functionality, the data would become a static archive rather than a structured, development-oriented
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resource. While the individual sub-components (b1), (b2), and (b3) focus on their specific domains, the over-
arching Market Analysis Agent (b) coordinates their outputs and maintains the vector database, integrating
the domain-specific data into a coherent and accessible structure for further analysis.

The Competitor Price/Product Observer Agent (b1) tracks and maintains accurate, time-stamped data
on competitor prices and product availability to ensure real-time visibility of external market conditions.
The framework can be expressed as follows: The Competitor Price/Product Observer Agent (O(b1)) is tasked
with the continuous tracking and aggregation of time-stamped data on competitor pricing and product
availability. This component ensures real-time visibility into external market conditions, supporting data-
driven optimisation by the Price Optimisation Agent (O(a)). The agent utilises advanced data pipelines to
retrieve and validate information, maintaining compliance with legal and ethical guidelines while preserving
data accuracy and temporal coherence. The optimisation framework for O(b1) can be expressed as:

O(b1) : Track and optimise
Dcomp,τ

{Dcomp(t) | t ∈ [t0, T ]} (25)

subject to: C1 : Dcomp must originate from verified and approved sources,

C2 : Tobs(t) ∈ R+ to ensure all data is time-stamped for trend analysis,

C3 : E[Acc(Dcomp)] ≥ ϵ to guarantee data accuracy and completeness,

C4 : Dcomp complies with legal standards for competitive monitoring,

Cn : Additional constraints tailored to specific business applications.

Here, Dcomp(t) represents the dataset of competitor prices and product availability as a function of time
t, while Tobs(t) denotes the observation timestamp associated with each data point, ensuring temporal
consistency. The term Acc(Dcomp) refers to the accuracy measure of the collected data, defined as the
proportion of error-free entries, with ϵ representing the minimum acceptable threshold for data accuracy.
Finally, [t0, T ] defines the time window over which competitor data is tracked and analysed.

The Competitor Price/Product Observer Agent (b1) has the additional objective of identifying the most
relevant competitors and their competitive products or services. We propose the agent generates a reasoning-
based ranking of competitors, assessing their relevance and competitive impact using a ”Competitive
Relevance Factor”. This factor reflects the degree of competitive pressure posed by each competitor.

The agent tracks competitor positioning, pricing strategies, price developments, discounts, and, where
possible, derives assumptions about client bases, customer segments, and other relevant indicators. In an
international context, the agent monitors the markets in which competitors operate, ensuring that market-
specific competitors are identified. This allows the Price Optimisation Agent (a) to determine the relevant
competitive landscape for any specific country or market where a price needs to be calculated. All data
collection adheres to legal boundaries and ethical standards, creating comprehensive competitor profiles and
ensuring compliance.

Since we have already proposed that every agent integrates a generative AI aspect, the Competitor
Price/Product Observer Agent (b1) allows humans to interact directly and retrieve specific insights, also
outside of active price calculations. This capability extends the agent’s objective to include focused tasks,
where humans in the loop can instruct the agent to monitor specific competitors, markets, or products and
services. These tasks can be executed as immediate requests or as semi-permanent assignments, enforcing
the agent to maintain ongoing observation and analysis over specified focus areas while ensuring alignment
with its core function.

The Customer and Client Behaviour Analyst Agent (b2) operates also within an objective-under-
constraints framework, focusing on monitoring and analysing customer and client behaviour in alignment
with the company’s overarching strategy. This agent receives specific instructions and constraints from the
Corporate Strategy Agent (g) and the Corporate Pricing Strategy Agent (e), which define the targeted
customer and client segments based on sociodemographic, behavioural, and strategic considerations.

The agent’s core task mirrors the general functionality of the Competitor Price/Product Observer Agent
(b1), such as continuous tracking, building a time-stamped vector database, and providing relevant insights.
The focus is to analysing purchasing patterns, demand behaviours, client preferences, and segment-specific
price sensitivities. The agent identifies trends, evaluates behavioural shifts, and builds comprehensive pro-
files for defined customer and client segments. These profiles include assumptions about purchasing power,
demand elasticity, and response to pricing strategies, all within the defined constraints. The framework can
be expressed as follows:

O(b2) : Determine and analyse
WT P,B

{
WT P(t),B(t)

∣∣∣ t ∈ [t0, T ]
}

(26)
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subject to: C1 : Target segments and focus areas are defined by agent (h),

C2 : Pricing strategy alignment is ensured as defined by agent (e),

C3 : Collected behavioural data must include timestamps,

C4 : Data collection adheres to legal, ethical, and privacy regulations,

Cn : Other constraints specific to real-world applications.

Here, WT P(t) represents the willingness to pay across target segments as a function of time t, while B(t)
denotes customer and client behaviour data, including purchasing patterns, demand elasticity, and response
to pricing strategies. The variable t ∈ [t0, T ] defines the time window for data collection and analysis. C1

ensures that the target segments and focus areas are defined by the Corporate Strategy Agent (h), while C2

guarantees alignment with pricing strategies as specified by the Corporate Pricing Strategy Agent (e). C3

enforces the inclusion of timestamps to track behavioural trends, and C4 mandates compliance with legal,
ethical, and privacy regulations. Finally, Cn accounts for additional constraints relevant to specific real-world
scenarios.

The Customer and Client Behaviour Analyst Agent (b2), like agent (b1), operates proactively and
independently, gathering relevant insights even in the absence of direct requests. This agent is also responsible
for determining the upper limit of the price corridor, which is heavily influenced by clients’ willingness
to pay. It specialises in analysing targeted customer segments and processes data through surveys, quick-
response studies, and similar quantitative methods. The agent must also process qualitative inputs, such
as expert assessments or structured methods like Delphi rounds, to refine insights on willingness to pay.
These analyses are conducted across a matrix of customer segments, ensuring the willingness-to-pay data is
accurately aligned with the defined sociodemographic and behavioural profiles. This agent is also tasked with
integrating value-based pricing research by identifying price-influencing criteria for each customer segment.
When multiple variables affect the willingness to pay, we propose the agent applies Analytical Hierarchy
Process (AHP) methods, as introduced by Saaty (1980), to prioritise and weight these factors systematically,
ensuring a structured evaluation of pricing drivers. The generic equation for AHP in this context can be
expressed as:

AHP-WTP(b2) : Wj =

∑n
i=1 (Cij · Pij)∑m

j=1 (
∑n

i=1Cij · Pij)
(27)

Here, Wj represents the weight of criterion j for a specific customer segment, while Cij denotes the compar-
ison value or score for criterion j with respect to factor i. The term Pij captures the priority or importance
assigned to factor i within criterion j. Additionally, n is the number of influencing factors within each cri-
terion, and m represents the number of criteria considered. The resulting weights Wj provide a structured
and prioritised evaluation of price-influencing criteria for each customer segment. These weights serve as a
key input for determining willingness to pay (WTP), ensuring that the pricing calculation accounts for the
most relevant factors and reflects the value perceived by customers.

The Replacement Product Analyst Agent (b3) operates with a specialised focus on identifying potential
threats or opportunities related to replacement products or services. This agent analyses the market to detect
alternatives that could directly or indirectly replace the company’s offerings, including solutions that solve
the same customer problem more effectively or efficiently. It also explores opportunities for the company’s
own products or services to enter new industries or replace existing solutions in adjacent markets. Given
the complexity and scope of this task, the agent requires a holistic understanding of product functionality
and customer needs. To refine its analysis and ensure precision, humans in the loop can interact with the
agent, instructing it to focus on specific products, industries, or solution spaces. Insights generated by this
agent are presented to humans for evaluation, and approved findings can be forwarded to the Competitor
Price/Product Observer Agent (b1) for further processing and integration. The framework can be expressed
as follows:

O(b3) : Analyse and identify
R,O

{
R(t),O(t)

∣∣∣ t ∈ [t0, T ]
}

(28)

subject to: C1 : Focus areas and priorities refined through human interaction,

C2 : Analyses include comparisons to identify alternative solutions,

C3 : Findings are presented to humans for approval,

C4 : Data collection and evaluation adhere to legal frameworks,

JNGR 5.0, Volume 1, Issue 2, January-February 2025, Page 16

www.jngr5.com
editor@jngr5.com


Journal of Next-Generation Research 5.0 Website: www.jngr5.com Email: editor@jngr5.com

Cn : Other constraints specific to real-world applications.

Here, R(t) represents the identification of replacement threats over time t, while O(t) captures opportunities
for the company’s products or services to replace existing solutions in new or adjacent markets. The variable
t ∈ [t0, T ] defines the time window for analysis. Constraint C1 allows humans to refine focus areas and
priorities through direct interaction with the agent, and C2 ensures that functional comparisons are included
in the analysis to identify alternative solutions. Constraint C3 mandates that all findings are presented to
humans for evaluation and approval before being processed further. C4 enforces compliance with legal and
ethical guidelines for data collection and evaluation, while Cn accounts for additional constraints relevant
to specific real-world scenarios.

The Replacement Product Analyst Agent (b3) can play an important role in optimising pricing strategies
by identifying replacement threats or opportunities for the company’s products or services. If a competitor
introduces an upcoming product or service that could replace the company’s offerings, this agent provides
early insights, enabling the company to adjust pricing strategies to remain competitive. For example, the
company may lower prices to counter the threat or extend the product lifecycle under competitive pressure.
The agent can detect functional alternatives that solve customer problems more effectively or efficiently,
which may impact perceived value and demand elasticity.

The group of agents under the Cost Tracking Agent (c) is responsible for continuously monitoring and
analysing all cost-related components that influence the lower boundary of the price corridor. These agents
systematically track internal costs, handled by the Internal Costs Analyst Agent (c1), external contract
terms, managed by the Contract Analyst Agent (c2), and supply chain dynamics, monitored by the Supply
Chain Analyst Agent (c3), ensuring the data provided is accurate, structured, and reflects real-time develop-
ments. The Cost Tracking Agent (c) coordinates its sub-agents and consolidates their outputs into a coherent
framework to support the Price Optimisation Agent (a) in determining cost-based pricing inputs. We pro-
pose also here that all gathered data is processed, time-stamped, and integrated into a central cost database
to ensure traceability and enable trend analysis. This allows for continuous calculating and monitoring of
cost degression, economies of scale, and external cost drivers that influence the lower price boundary.

The Internal Costs Analyst Agent (c1) is tasked with monitoring and analysing all internal cost com-
ponents necessary for determining the lower boundary of the price corridor. This agent systematically
differentiates between fixed costs and variable costs, ensuring data is gathered from controlling depart-
ments, accounting systems, bookkeeping processes, human-in-the-loop inputs, and other relevant sources.
It processes key cost structures, such as unit cost calculations, project-based costing, and other cost allo-
cation methods relevant to business operations. For fixed costs, the agent monitors expenses that remain
constant regardless of production levels, such as rent, salaries, and depreciation schedules. For variable
costs, it evaluates expenses that fluctuate with output, including raw materials, energy consumption, and
production-related logistics.

The agent must account for economies of scale with a clear data foundation, as these are often contrac-
tually defined or based on predetermined agreements, such as bulk purchase discounts or tiered pricing.
This requires close interaction with the Contract Analyst Agent (c2) to assess supplier agreements and
negotiated cost reductions, as well as the Supply Chain Analyst Agent (c3) to evaluate dynamic supply
chain costs and alternative sourcing options. The agent incorporates historical data, forecasts, and trends
to reflect changes in internal costs, such as inflation, resource price volatility, and operational efficiencies.
Integrating these inputs, including human-in-the-loop assessments, the agent ensures that the lower price
boundary reflects both current cost realities and opportunities for cost optimisation. This comprehensive
approach allows for the accurate calculation of cost-based inputs, accounting for fixed and variable dynam-
ics, economies of scale, and alternative sourcing possibilities. The objective-under-constraints framework of
the Internal Costs Analyst Agent (c1) can be expressed as:

O(c1) : Monitor and analyse
Cfixed,Cvariable

{
Cfixed(t), Cvariable(t)

∣∣∣ t ∈ [t0, T ]
}

(29)

subject to: C1 : Fixed and variable costs are accurately differentiated,

C2 : Data is sourced from controlling, accounting, and reliable inputs,

C3 : Economies of scale are integrated using contractual insights,

C4 : Cost trends and forecasts, including inflation, are considered,

Cn : Other constraints specific to real-world applications.

Here, Cfixed(t) and Cvariable(t) represent fixed and variable internal costs over time t. Constraint C1 ensures
accurate cost categorisation, while C2 mandates reliable data sources, including controlling and accounting.
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C3 incorporates economies of scale based on contractual agreements or data-driven models, and C4 accounts
for cost trends, inflation, and operational efficiencies. Cn addresses additional constraints relevant to specific
applications. The Internal Costs Analyst Agent (c1) ensures the accurate integration of cost components
into the optimisation process as defined by equations (14), (15), and (16).

This agent provides critical inputs to the calculation of C(Q), which represents the unit cost as a
function of production levels. Fixed costs (FC) and variable costs (V C) are dynamically adjusted based on
production volume (Q) and economies of scale. These inputs feed into Pmin, ensuring that cost structures
align with real-time data and operational conditions. The agent accurately represents cost degression effects
and bulk purchase discounts, allowing the optimisation framework to reflect realistic and achievable pricing
boundaries. These precise calculations play a pivotal role in determining the contribution margin, enabling
pricing strategies to remain cost-covering and competitive while maximising profitability.

The Contract Analyst Agent (c2) focuses on analysing contract terms, particularly within supply chain
management, to provide cost-related insights. Unlike the mathematically oriented architecture of the Internal
Costs Analyst Agent (c1), this agent relies on Large Language Model (LLM) capabilities to reason and
interpret the often complex and context-dependent nature of legal contracts. It must understand specific
terms within the framework of international pricing strategies, including diversification and market-specific
agreements.

The agent interprets clauses such as supplier pricing tiers, volume discounts, and delivery conditions to
identify terms relevant to cost calculations. It works in coordination with the Internal Costs Analyst Agent
(c1) and the Price Optimisation Agent (a) to contextualise contractual data for accurate integration into
pricing decisions. The objective-under-constraints framework of the Contract Analyst Agent (c2) can be
expressed as:

O(c2) : Analyse and interpret
Tcontract

{
Tcontract(t)

∣∣∣ t ∈ [t0, T ]
}

(30)

subject to: C1 : Contracts are interpreted for international pricing strategies,

C2 : Key terms are prioritised,

C3 : Complex clauses are resolved via LLM capabilities,

C4 : Data aligns with inputs for agents (c1) and (a),

Cn : Other real-world constraints.

Here, Tcontract(t) represents the time-dependent analysis of contract terms, ensuring that key factors such as
volume discounts and delivery conditions are prioritised (C2). C1 ensures the context of international pricing
strategies is considered, and C3 employs LLM capabilities to interpret complex clauses. C4 mandates align-
ment of contractual data with the inputs required by Cost Tracking Agent (c1) and Price Optimisation Agent
(a). Cn accommodates additional constraints for real-world scenarios. A possible human-in-the-loop inte-
gration for the Contract Analyst Agent (c2) could involve collaboration with legal departments or contract
specialists, who can supply necessary documents or validate interpretations. This agent must be capable of
analysing various document formats, such as PDFs or other structured and unstructured legal texts. Given
its focus on sensitive contract-level information, the agent must operate within a highly secure environ-
ment to prevent accidental exposure of confidential details. Oversight from the compliance department, or a
designated compliance agent, is essential to ensure adherence to confidentiality guidelines and prevent unau-
thorised dissemination of sensitive information. As an alternative, we propose that instead of directly sharing
contractual data with other agents, the Contract Analyst Agent (c2) could reverse the information flow. In
this approach, other agents query the Contract Analyst Agent (c2) for specific data points, such as agreed-
upon prices, volume discounts, or delivery terms, without receiving the full contract details. The Contract
Analyst Agent (c2) validates these requests, approving or rejecting queries based on compliance rules, and
provides only the necessary values for integration into the pricing process. This design ensures the system
maintains confidentiality while enabling seamless collaboration across agents. The Supply Chain Analyst
Agent (c3) monitors the supply chain, tracking current suppliers and identifying potential alternatives by
building detailed profiles and ratings for each supplier. This agent continuously evaluates supplier pricing,
pricing models, and relevant conditions, providing real-time insights into opportunities for cost reductions.
For example, if a supplier with a rating of 87 lowers the price for specific parts, the agent could identify the
potential cost savings and recommend switching suppliers for a particular production series or more broadly.

In addition to cost monitoring, the Supply Chain Analyst Agent (c3) supports calculations related to Nash
equilibrium, as expressed in (19), and principal-agent pricing models, as formalised in (20). These frameworks
address information asymmetry and optimise interactions within the supply chain. Given that supply chain
monitoring often involves implicit information and context rather than explicitly stated data, the agent
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requires advanced reasoning and contextual understanding capabilities to integrate these elements effectively
into the pricing framework. This ensures it can process and interpret complex data to provide actionable
recommendations that align with cost optimisation and strategic objectives. The objective-under-constraints
framework of the Supply Chain Analyst Agent (c3) can be expressed as:

O(c3) : Monitor and evaluate
S

{
S(t)

∣∣∣ t ∈ [t0, T ]
}

(31)

subject to: C1 : Supplier profiles and ratings are continuously updated,

C2 : Pricing changes and conditions are monitored in real time,

C3 : Recommendations align with goals and cost-saving strategies,

C4 : Implicit context is interpreted using advanced reasoning,

C5 : New supplier opportunities are identified,

C6 : Outputs support Nash and principal-agent calculations,

C7 : Compliance with legal and regulatory standards is ensured,

Cn : Other real-world constraints.

Here, S(t) represents the supply chain data monitored over time t, including supplier profiles, ratings,
pricing changes, and conditions. Constraint C1 ensures that supplier profiles and evaluations are continuously
updated, while C2 mandates real-time monitoring of pricing changes and supplier conditions. C3 aligns
recommendations with production goals and cost-saving strategies, and C4 employs advanced reasoning
to interpret implicit context and unstructured data. C5 identifies opportunities for new suppliers, and C6

supports calculations for Nash equilibrium and principal-agent models to address information asymmetry.
C7 ensures all outputs comply with ethical, legal, and regulatory standards, and Cn accounts for additional
real-world constraints.

The Supply Chain Analyst Agent (c3) could benefit from a strong human-in-the-loop component to
enhance its performance. Humans can provide specific instructions, such as identifying key suppliers to
monitor more closely or prioritising potential new supply partners and stakeholders. Ahn et al. [1] propose
a method within their Generative Probabilistic Planning (GPP) framework that combines attention-based
graph neural networks (GNNs), offline deep reinforcement learning (Offline RL), and policy simulations to
dynamically optimise supply chain actions, utilising historical data to make informed decisions under uncer-
tainty and adapt to changing objectives such as maximising profits or service levels. Quan and Liu (2024)
introduce InvAgent, a LLM-based zero-shot multi-agent system for inventory management that significantly
enhances supply chain resilience and efficiency through adaptive decision-making, superior explainability
with CoT integration, and dynamic responses to fluctuating demands, as validated by extensive evaluations.

To improve the efficiency of agent (c3), we also propose the implementation of an AI-readable, supply
chain-wide, central, high-quality, data-driven marketplace that is accessible to all participants and AI agents
within the network. This marketplace would allow the agents to access and evaluate profiles, ratings, pric-
ing models, and other critical supplier information in a structured format. The agents could also analyse
additional metrics such as Environmental, Social, and Governance (ESG) ratings, financial credibility, and
product specialisation to identify high-rated suppliers or strategic opportunities. The agents could then rec-
ommend specific actions to humans, such as initiating contact with potential partners. The same marketplace
could also support the agents in identifying potential clients and customers within the supply chain, creat-
ing opportunities on both the supply and demand sides. The Historical Pricing Strategy Observer Agent (d)
focuses on building and maintaining a structured, time-stamped archive of pricing data. This agent moni-
tors the development of the company’s historical prices and tracks competitor price trends over time. The
inclusion of timestamps is essential for constructing time series data, enabling the agent to analyse tempo-
ral price evolutions, detect patterns, and identify long-term pricing trends. A robust time series database
allows for the application of forecasting methods to anticipate future price movements or anomalies. The
agent deploys advanced analytical and AI algorithms to derive actionable insights. For example, regression
analysis can predict price developments based on historical trends and influencing factors, while seasonal
decomposition techniques identify periodic patterns within pricing data. Other techniques, such as expo-
nential smoothing and AutoRegressive Integrated Moving Average (ARIMA) models, can support accurate
forecasting of pricing trajectories.

These insights assist the Price Optimisation Agent (a) in understanding past behaviours, evaluat-
ing strategic adjustments, and predicting optimal price corridors under evolving market conditions. The
objective-under-constraints framework of the Historical Pricing Strategy Observer Agent (d) can be
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expressed as:

O(d) : Store and analyse
Ptime

{
Ptime(t)

∣∣∣ t ∈ [t0, T ]
}

(32)

subject to: C1 : Data must include timestamps for time series construction,

C2 : Ensure accuracy and consistency of archived pricing data,

C3 : Collected data must comply with privacy and legal regulations,

C4 : Integration with external sources for competitor pricing is permitted,

Cn : Other constraints specific to real-world applications.

Here, Ptime(t) represents time-stamped pricing data as a function of time t. Constraint C1 ensures that
timestamps are included for constructing time series models, and C2 mandates accuracy and consistency in
archived data. C3 enforces compliance with privacy and legal standards, while C4 permits integration with
external sources for competitor pricing. Cn accounts for additional real-world constraints.

The Historical Pricing Strategy Observer Agent (d) cooperates closely with other agents by exchanging
critical data and insights. It works in coordination with the Competitor Price/Product Observer Agent (b1)
to gather competitor pricing trends and align findings with real-time observations. The Price Optimisation
Agent (a) utilises this agent’s time-stamped data to calibrate its pricing calculations, particularly when
incorporating historical performance into optimisation models. The agent supports the Customer and Client
Behaviour Analyst Agent (b2) in assessing price elasticity based on past behaviours and identifying segment-
specific responses to price changes.

The Corporate Pricing Strategy Agent (e) is responsible for managing and analysing the company’s
overarching pricing strategies. This agent evaluates, updates, and ensures alignment of pricing strategies
with corporate objectives, such as profitability targets, market positioning, and competitive dynamics. It
maintains a structured repository of applied pricing strategies, including cost-plus, value-based, and psycho-
logical pricing methods, to guide the Price Optimisation Agent (a) and ensure that all pricing decisions align
with the company’s strategic goals. This agent incorporates data from other agents, such as the Historical
Pricing Strategy Observer Agent (d), to assess the effectiveness of past strategies and adjust current ones
accordingly. The Corporate Pricing Strategy Agent (e) monitors market trends, competitor approaches, and
customer behaviour to refine and adapt pricing strategies in response to dynamic business environments.
The objective-under-constraints framework of the Corporate Pricing Strategy Agent (e) can be expressed as:

O(e) : Evaluate and adapt
Spricing

{
Spricing(t)

∣∣∣ t ∈ [t0, T ]
}

(33)

subject to: C1 : Pricing strategies align with corporate goals,

C2 : Strategies comply with legal and ethical standards,

C3 : Dynamic inputs from agents (d), (b2), and (b3) are incorporated,

C4 : Adjustments to strategies are time-stamped for traceability,

Cn : Other constraints specific to real-world applications.

Here, Spricing(t) represents pricing strategies as a function of time t. Constraint C1 ensures alignment with
corporate goals such as profitability and market positioning, while C2 mandates compliance with legal and
ethical standards. C3 incorporates dynamic inputs from Time-Stamped Pricing Data Agent (d), Customer
Behaviour Analyst Agent (b2), and Replacement Product Analyst Agent (b3). C4 requires adjustments to
strategies to be time-stamped for traceability, and Cn accounts for additional real-world constraints. This
agent collaborates closely with the Price Optimisation Agent (a) to ensure alignment between strategic goals
and operational pricing decisions. It also works with the Historical Pricing Strategy Observer Agent (d) to
evaluate the outcomes of past strategies, integrating insights into future adjustments.

The Price Policy Effect Agent (f) evaluates the historical effects of implemented pricing strategies
across different markets, identifying how past price adjustments influenced sales performance. It focuses on
analysing the relationship between price changes and corresponding sales volumes, commonly referred to as
price-demand elasticity.

The agent operates with a strong mathematical focus, modelling and optimising the nonlinear price-
demand function to determine how price adjustments affect sales quantities, customer retention, and
acquisition rates. Regression analysis supports forecasting demand under various pricing scenarios while
accounting for additional factors such as marketing activities, competitor pricing, and seasonal trends.
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Evaluating this relationships identifies optimal price points that maximise overall profitability while
accounting for contribution margins and production costs. The agent generates models to predict demand
responses under various pricing scenarios, ensuring alignment with the company’s strategic goals.

It assesses how price policy changes impact total revenue, profitability, and unit economics, creating a
foundation for dynamic price optimisation. The objective-under-constraints framework of the Price Policy
Effect Agent (f) can be expressed as:

O(f) : Optimise
Popt,Q

{
Popt(t),Q(t)

∣∣∣ t ∈ [t0, T ]
}

(34)

subject to: C1 : Price-demand relationship uses historical and real-time data,

C2 : Optimisations consider contribution margins,

C3 : Nonlinear price elasticity is included,

C4 : Models align with goals set by agent (g),

Cn : Other real-world constraints.

Here, Popt(t) represents the optimised price over time t, while Q(t) denotes the demand function. Constraint
C1 ensures that the price-demand relationship is modelled using both historical and real-time data, and
C2 incorporates contribution margins and unit profitability. C3 requires the analysis to include nonlinear
price elasticity effects, and C4 ensures alignment with profitability goals set by Corporate Strategy Agent
(g). Cn accounts for additional constraints relevant to real-world scenarios. To further support the agent’s
ability to analyse price-demand relationships and optimise price policy effects, we propose incorporating
regression analysis for forecasting demand based on pricing decisions and other influencing factors which can
be expressed as: To further support the agent’s ability to analyse price-demand relationships and optimise
price policy effects, we propose incorporating regression analysis for forecasting demand based on pricing
decisions and other influencing factors, which can be expressed as:

Q = β0 + β1P + β2P
2 +

n∑
i=1

γiXi + ε (35)

Here, Q represents demand or quantity sold (dependent variable), and P is the price of the product (inde-
pendent variable). The term P 2 captures nonlinear price effects, such as diminishing or increasing elasticity.
Xi includes additional explanatory variables, such as competitor prices, marketing spend, or seasonal effects.
β0 is the intercept term, while β1 and β2 are the coefficients for price and price squared, respectively. γi rep-
resents the coefficients for other influencing variables Xi, and ε is the error term accounting for unobserved
factors.

This regression model enables the agent to quantify the impact of price changes on sales volume, identify
non-linear price elasticity effects, and incorporate additional factors such as marketing activities, competitor
pricing, or seasonal trends. The coefficients derived from the regression provide actionable insights that
the agent can use to recommend adjustments to optimise demand and maximise profitability. The agent
collaborates closely with the Price Optimisation Agent (a), providing critical input for dynamic pricing
decisions.

It also integrates with the Time-Series Price Analysis Agent (d) to incorporate historical trends and
forecasts into its analysis.

The Corporate Strategy Agent (g) ensures that the calculated prices align with the company’s overarching
strategic objectives. This agent acts as a reference framework, holding the strategic guidelines that dictate
the pricing approach, such as premium positioning, cost leadership, or market penetration strategies. It
communicates directly with the Price Optimisation Agent (a), validating that the chosen prices reflect the
company’s strategic intent.

For example, in a premium strategy, prices must remain high to preserve perceived value and exclusivity,
while in a cost leadership strategy, lower prices must reflect optimised production costs and higher sales
volumes. Agent (g) can instruct Agent (a) to adjust price calculations where misalignments occur, ensuring
coherence between pricing outcomes and strategic goals.

3.10 Relevance of AI Techniques Across Multi-Agent System

The integration of reinforcement learning into multi-agent systems has significantly enhanced real-time price
optimisation. Agents are capable of dynamically adjusting prices in response to market fluctuations, thereby
improving adaptability and profitability [31]. These technologies facilitate real-time pricing adjustments
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based on demand, competition, and customer behaviour, rendering pricing strategies more responsive and
data-driven. Recent research examines the significance of uncertainty modelling in enhancing the reliability
and adaptability of multi-agent systems.

Lockwood and Si [34] discuss methodologies to quantify and manage uncertainty in reinforcement learn-
ing, emphasising its critical role in ensuring reliable decision-making in dynamic environments. Similarly,
Lütjens et al [37] propose incorporating model uncertainty estimates into reinforcement learning, enhancing
safety by mitigating overconfident decisions in unfamiliar scenarios.

These approaches are particularly pertinent for AI-driven pricing strategies, which must navigate uncer-
tain and unpredictable market conditions. Further advancements in uncertainty modelling focus on balancing
optimism and pessimism in risk-aware reinforcement learning. Vlastelica et al [53] address both epis-
temic (knowledge-based) and aleatoric (inherent) uncertainties, improving decision-making robustness in
safety-critical applications such as dynamic pricing systems.

Charpentier et al [9] articulate the challenges in achieving real-time performance for agents in reinforce-
ment learning due to the inherent difficulties in accurately predicting and managing aleatoric and epistemic
uncertainties within dynamic environments. Jin et al [29] present TIME-LLM, a framework that effectively
repurposes large language models for time series forecasting by transforming input data into text prototypes
and using ”Prompt-as-Prefix” to enhance reasoning, demonstrating superior performance in few-shot and
zero-shot scenarios without altering the original model architecture. Becker and Neumann [5] examine the
effects of overestimated aleatoric uncertainty in deep state space models, noting it serves as implicit regular-
isation that improves robustness but can compromise performance in tasks demanding accurate uncertainty
assessments, such as environments with occlusions or heterogeneous sensor inputs.
Table 1 presents the subjective relevance scores of selected artificial intelligence techniques across multiple
dimensions, representing their applicability in a multi-agent system context. The table highlights the tech-
niques deemed most critical for discussion, based on their significant roles in enhancing the performance,
reliability, and decision-making capabilities within complex AI-driven applications.

Table 1 Subjective relevance scores of AI techniques across multi-agent system components.

Technique (a) (b) (b1) (b2) (b3) (c) (c1) (c2) (c3) (e) (f) (g)

Machine Learning 9 8 7 8 6 9 7 8 9 7 9 8
Reinforcement Learning 7 6 5 6 5 7 5 6 6 5 7 6
Large Language Models 8 8 7 8 7 6 9 7 7 6 8 7
Time Series 7 7 7 8 6 7 6 7 9 6 8 7
Optimisation 10 9 7 8 7 9 6 8 8 7 9 8
Data Retrieval 8 8 8 9 8 9 9 9 9 7 8 7
Knowledge Graphs 7 7 6 7 6 8 7 8 7 6 8 7
Uncertainty Modelling 7 6 5 6 6 7 6 6 7 5 6 6
Graph RAG 6 8 7 8 6 8 8 7 8 6 7 6

The table reflects a deliberate evaluation of AI techniques based on their roles in enhancing the multi-agent
system’s ability to perform dynamic pricing. Machine Learning achieves high scores across components due to
its predictive accuracy and adaptability in complex environments. Reinforcement Learning supports iterative
bargaining strategies, making it crucial for negotiation scenarios. Large Language Models excel in processing
natural language inputs, enabling effective communication with sales teams and customers. Time Series
methods are integral for forecasting demand and adjusting pricing strategies dynamically. Optimisation
techniques provide the foundation for determining efficient price corridors and thresholds. Data Retrieval
ensures the integration of real-time data, supporting informed decision-making. Knowledge Graphs facilitate
reasoning over complex relationships among data entities. Uncertainty Modelling enhances the system’s
robustness by managing quality and mitigating risks. Graph RAG adds contextual understanding through
retrieval-augmented generation, proving useful in refining negotiation strategies and generating context-
aware suggestions.

In practical applications, the methodologies and associated evaluations may vary significantly based on
the organisation’s specific context, including the product, market, and business model, and the resultant
artificial intelligence model configuration determined by these factors.

To augment the training efficiency of the AI models, particularly those tasked with processing natural
language inputs or outputs, we propose the adoption of a self-distillation method inspired by Zhang et al
[54]. This approach utilises the internal capabilities of large language models to refine and optimise their
own performance without extensive retraining on new datasets. Self-distillation, as detailed in their study,
involves the model generating its own training data by creating outputs that are then utilised as new inputs
in a repetitive cycle.
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Implementing self-distillation could significantly enhance the responsiveness and adaptability of our AI
systems, particularly in scenarios requiring dynamic interaction with sales teams and real-time negotiation.
Through the efficient processing of complex inputs, including customer queries, market updates, and pricing
adjustments, the artificial intelligence system enhances its capacity to support strategic decision-making.
This method will be particularly beneficial in the ’Real-Time Data Processing’ module of our AI framework,
ensuring that the system not only learns more effectively from limited data but also adapts more rapidly
to changes in pricing contexts, thereby enhancing overall system performance and reliability in dynamic
pricing environments.

3.11 Generic High-Level Overview of Agent Communication and Task Delegation

The Price Optimisation Agent (a) functions as the primary coordinator, facilitating communication and
allocating tasks to other agents within the system. Communication is structured through standardised data
formats, such as JSON or XML, and shared ontologies to ensure consistency in data interpretation and
efficient collaboration.

Predefined APIs enable the Price Optimisation Agent (a) to issue specific queries, such as requesting
competitor pricing data from the Competitor Price/Product Observer Agent (b1) or cost updates from the
Internal Costs Analyst Agent (c1). Pricing tasks are deconstructed into subtasks and assigned to agents
based on their roles and expertise.
A task-oriented communication framework within multi-agent systems, advanced by He [24], utilises deep
reinforcement learning to optimise the relevance and efficiency of information flow. This framework addresses
architectural and practical challenges while highlighting the necessity for future research in semantic theory
and system design to enhance multi-agent collaborative decision-making. Multi-agent planning techniques,
including algorithms such as the Contract Net Protocol, dynamically allocate tasks and resolve inter-agent
dependencies, effectively managing the coordination and cooperation among agents to optimise the overall
system performance by distributing responsibilities based on agent capabilities and current workload [36].

Dynamic scheduling adjusts task priorities in real time, accounting for factors such as supply chain dis-
ruptions reported by the Supply Chain Analyst Agent (c3). Data is exchanged via vector databases, which
store and manage time-stamped records for trend analysis, and knowledge graphs, which map relationships
among agents, pricing variables, and market dynamics. Advanced coordination methods enhance collabo-
ration. Reinforcement learning optimises task delegation by analysing historical interactions among agents
and improving future efficiency.

Game-theoretic approaches, such as Nash equilibrium models, balance competing objectives like cost
minimisation and competitive pricing strategies. Discrepancies between agents are resolved through negotia-
tion algorithms, while consensus mechanisms confirm shared decisions, such as validating pricing boundaries
proposed by the Corporate Pricing Strategy Agent (e). This workflow presents a generic model for multi-
agent system communication and task delegation. In practice, specific workflows and configurations may
vary depending on the company’s product, market, and operational context. To formalise the communi-
cation and data aggregation process of the Price Optimisation Agent (a) with other agents, the following
equation models the interaction framework:

Ra =

n∑
i=1

wi · Fi(Qi, Di) (36)

Here, Ra represents the aggregated response or output of the Price Optimisation Agent (a). n is the total
number of interacting agents, such as b1, c1, and c3. wi denotes the weight or priority assigned to Agent i,
while Fi is the function of Agent i, which depends on its query (Qi) and data state (Di). Qi is the query
issued by Agent (a) to Agent i, and Di represents the data or state of Agent i.

This equation allows for an adaptive weighting mechanism (wi), enabling the Price Optimisation Agent
(a) to prioritise responses dynamically based on real-time market conditions or specific pricing scenarios.
For instance, reinforcement learning can be employed to fine-tune wi over time by analysing historical task
performance and agent reliability, with inputs from the Price Policy Effect Agent (f), which evaluates the
outcomes of past pricing strategies. Modelling and optimising nonlinear price-demand relationships, the
Price Policy Effect Agent (f) provides actionable insights that enable the Price Optimisation Agent (a) to
adjust its data aggregation priorities and improve decision-making accuracy dynamically.

The aggregated response (Ra) derived through this interaction framework serves as the foundational
input for key pricing equations in the Weighted Dynamic Corridor Price Optimisation model, including the
dynamic boundaries (Pmin and Pmax, including the dynamic boundaries (Pmin and Pmax, equations (3), (4),
(5), (6), (7), (8), and (9)) and the optimisation of the profit-maximising price (Poptimal, equation (13)).
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4 Discussion

The AI supported Weighted Dynamic Corridor Price Optimisation (WDCPO) model marks an improvement
in the field of dynamic pricing techniques. This approach enables swift and adaptable price adjustments
by establishing a pricing range with upper and lower boundaries that consider production costs, consumer
price tolerance, and market sensitivity. The corridor pricing strategy enables dynamic modifications based
on various market-influencing factors. Unlike traditional static methods, this framework ensures profitability
whilst maintaining a competitive edge in fluctuating markets. The model’s foundation lies in a multi-agent
artificial intelligence system, which introduces a structured and modular approach. Each agent functions
within well-defined parameters and limitations, contributing to a cohesive pricing strategy. For example,
the Price Optimisation Agent amalgamates inputs from cost analysis, market surveillance, and corporate
strategy to determine optimal pricing solutions. This design simplifies the complex task of aligning pricing
decisions with strategic goals while preserving flexibility.

Benefits: The proposed system offers advantages, particularly in supply chain management and dynamic
pricing optimisation. Its capacity to integrate real-time data from multiple sources ensures that pricing
strategies remain responsive to fluctuations in production costs, market demand, and competitive conditions.
Advanced artificial intelligence techniques, such as reinforcement learning and large language models (LLMs),
enable the system to process and interpret data effectively, providing actionable insights for decision-makers.
The introduction of cooperative and semi-cooperative pricing frameworks enhances the system’s versatility.
The Fully Cooperative Price Equilibrium Framework, based on Nash equilibrium principles, allows supply
chain participants to align on pricing strategies that maximise collective profitability. In semi-cooperative
scenarios, the system applies principal-agent theory to address information asymmetry, ensuring that pricing
decisions remain efficient and mutually beneficial. Another key advantage lies in the modular design of the
system. Each agent operates independently, with tasks clearly delineated and aligned with overall strategic
objectives. This structure enhances scalability and flexibility, allowing the system to adapt to diverse market
conditions and operational contexts. Moreover, the inclusion of a centralised, AI-readable supply chain mar-
ketplace enables seamless collaboration between agents, improving cost management and decision-making
efficiency.

Challenges: Despite its advantages, the system encounters significant challenges related to implementa-
tion and data dependency. The development and maintenance of such a multi-agent system necessitates
considerable expertise in artificial intelligence development, access to high-quality data, and substantial
computational resources. For smaller organisations, these requirements may present barriers to adoption,
particularly in the absence of modular, pre-trained artificial intelligence systems tailored to specific indus-
tries. Data quality constitutes another critical challenge. The framework relies on consistent and accurate
data inputs from diverse sources, including production systems, market analytics, and customer platforms.
Fragmented or incomplete datasets can undermine the accuracy of pricing calculations and forecasts, thereby
reducing the system’s effectiveness in real-world scenarios. Industries with sparse or unstructured data
may encounter difficulties in fully leveraging the framework’s capabilities. Real-time processing and coor-
dination between agents also impose high computational demands. In complex supply chain environments,
ensuring seamless communication and task delegation among agents requires advanced infrastructure and
well-designed protocols. In the absence of these, the system’s efficiency and accuracy may be compromised.

Legal and Ethical Considerations: The framework proposed in this paper integrates ethical and legal con-
siderations directly into the constraint structures of the domain-specific agents, ensuring these factors are
foundational rather than supplementary. Each agent operates within an objective-under-constraints frame-
work where compliance with legal standards and ethical guidelines is explicitly embedded. These constraints
are designed to accommodate the specific requirements of the agent’s function, such as adherence to competi-
tion laws in market analysis or data protection regulations in customer behaviour modelling. This integration
assures that the proposed system operates within a legally sound and ethically foundation, irrespective of
the agent’s domain or task. The system’s incorporation of these considerations within its constraint frame-
work enables it to be both scalable and adaptable, whilst reducing the likelihood of breaches. The modular
architecture of the system enables the integration of ethical considerations into agent-specific constraints.
For instance, agents tasked with competitor analysis must observe antitrust regulations to avoid breaching
competition laws. Similarly, agents analysing customer behaviour must adhere to GDPR and similar laws
to protect individual privacy and prevent discrimination [11].

The implementation must address several legal and ethical considerations, particularly regarding data
privacy and artificial intelligence regulation. Data privacy laws, such as the General Data Protection Regu-
lation (GDPR; European Commission, 2016), require organisations to ensure transparent, secure, and lawful
processing of personal data [11]. GDPR specifically mandates that AI systems processing personal data
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adhere to principles of data minimisation, purpose limitation, and accountability. Similarly, the California
Consumer Privacy Act (CCPA; California Legislature, 2018) grants residents the right to access, delete, and
opt out of the sale of their personal data, impacting how AI models collect and use consumer information
[33]. In Canada, the Personal Information Protection and Electronic Documents Act (PIPEDA; Govern-
ment of Canada, 2000) governs data collection and obligates organisations to obtain meaningful consent
and safeguard personal information [8]. Brazil’s Lei Geral de Proteção de Dados (LGPD; Presidência da
República, 2018) and South Africa’s Protection of Personal Information Act (POPIA; South Africa Govern-
ment, 2013) reflect similar principles, adapted to local contexts [46, 22]. Singapore’s Personal Data Protection
Act (PDPA; Singapore Government, 2012) underscores this global trend toward harmonising data privacy
standards [21]. Artificial intelligence frameworks are equally crucial for structuring the proposed system.
The European Union’s Artificial Intelligence Act (AI Act; European Commission, 2021) establishes har-
monised rules for trustworthy AI by categorising systems based on risk levels and enforcing accountability
measures for high-risk applications [12]. Additionally, UNESCO’s Recommendation on the Ethics of Arti-
ficial Intelligence (2021) promotes transparency, fairness, and human oversight [52]. In the United States,
the Blueprint for an AI Bill of Rights (White House, 2022) outlines principles for safe and equitable AI
[28], further reflected in Canada’s Directive on Automated Decision-Making (Government of Canada, 2019),
which sets clear standards for transparency and bias mitigation in automated processes. Compliance also
extends to laws governing international markets. China’s Personal Information Protection Law (PIPL) [45]
and Saudi Arabia’s Personal Data Protection Law (PDPL, 2021) impose stringent localisation and consent
requirements. AI-specific guidelines, such as the OECD AI Principles (2019) [44] and the G20 AI Principles
(2019) [17], provide additional guidance for supporting human-centric and ethical AI development across
jurisdictions.

Future Directions: Advancing the proposed system necessitates addressing its limitations while enhanc-
ing its usability. One immediate priority is the development of modular, pre-trained artificial intelligence
agents that can be customised for specific industries and scales of operation. Such agents would lower bar-
riers to entry for smaller businesses, reducing deployment times and resource requirements. The integration
of human-in-the-loop functionality presents another area for improvement. Allowing human oversight and
interaction with individual agents can enhance the system’s flexibility and address potential misalignments.
Research into workflows that optimise human-artificial intelligence collaboration, including user-friendly
interfaces and transparency in decision logic, would render the system more accessible to non-technical
stakeholders. Scalability and interoperability should also be prioritised. Extending the system to support
global markets with diverse regulatory and economic conditions requires robust algorithms capable of han-
dling cross-border complexities. Exploring advanced techniques, such as graph neural networks and hybrid
reinforcement learning models, may further optimise decision-making processes in highly variable environ-
ments. The incorporation of emerging technologies, such as the Internet of Things (IoT) and blockchain,
could enhance data reliability and granularity. IoT devices can provide real-time inputs on production and
logistics, while blockchain can validate supply chain transactions, ensuring data integrity.

Conclusion: The WDCPO framework and its associated multi-agent AI system present an innovative method
for dynamic pricing. This model employs sophisticated AI techniques and concepts from game theory to
ensure adaptability, profitability, and competitive alignment across diverse market scenarios. The system’s
modular design and collaborative structures address key challenges in supply chain management, enabling
participants to improve pricing strategies collectively or individually. Although the framework is theoretically
robust, its intricacy introduces potential obstacles. As the system expands, it may become more susceptible to
errors and require considerable upkeep to maintain consistency and dependability. Recognising and resolving
inefficiencies could necessitate substantial effort, particularly in troubleshooting, agent coordination, and
process refinement. As a result, additional empirical testing is essential to assess its effectiveness in real-
world applications. Enhancing the system will necessitate further research into modular agent development,
human-AI collaboration, and scalability.

5 Limitation

This study focuses on the theoretical development of the Weighted Dynamic Corridor Price Optimisation
(WDCPO) model and its supporting multi-agent AI system. While the conceptual framework is robust,
its validation relies on further empirical testing. The absence of real-world implementation and field data
introduces uncertainties regarding its scalability and performance in diverse industries and markets.

The model’s dependency on high-quality, structured data is another consideration. Industries with frag-
mented or limited datasets may encounter challenges in fully realising the system’s potential. Furthermore,
the modular design and multi-agent architecture necessitate advanced computational infrastructure and
expertise, which may require tailored adaptations for implementation in specific organisational contexts.
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The study does not address all potential use cases exhaustively. Instead, it focuses on establishing a foun-
dational framework that can be adapted to varying needs. This inherent adaptability, while advantageous,
means the system’s real-world customisation and performance remain subject to practical testing.

6 Future Research

Future research should prioritise empirical validation of the proposed framework through controlled experi-
ments and pilot studies. Testing the system in specific industries, such as retail, manufacturing, or logistics,
would provide valuable insights into its effectiveness and areas for refinement. Metrics such as profitability
optimisation, adaptability to market changes, and agent collaboration efficiency should guide these evalu-
ations. Further research is also required to explore how human involvement, or human-in-the-loop (HITL)
systems, can be effectively integrated into the model. This includes defining the specific roles and functions
humans should perform within the system, such as overseeing critical decisions, intervening in exceptional
cases, or fine-tuning agent outputs.

A particular focus on the psychological aspects of HITL systems is essential, as the ease of human inter-
action and cognitive alignment with AI systems directly impacts usability, trust, and error reduction. There
is a need to study how the structure and architecture of multi-agent systems can remain comprehensible to
human operators. This involves balancing the use of domain-specific agents with the application of diverse
algorithms and AI techniques. Research should assess the optimal level of human understandability in these
systems, ensuring that domain-specific agents are sufficiently transparent and maintainable. Each agent’s
objectives, data sources, and decision logic must be designed to facilitate human oversight and intervention,
reducing errors and improving adaptability in dynamic scenarios.

The development of modular, pre-trained AI agents tailored to specific domains remains an essential next
step. These agents could be fine-tuned with industry-specific data, reducing deployment time and resource
requirements. Creating accessible, scalable versions of the system would make it suitable for organisations
of varying sizes and operational scales. Designing workflows and tools to visualise agent interactions and
decision-making logic will help bridge the gap between technical complexity and managerial usability. A focus
on ensuring the system remains human-understandable at a specific level will mitigate risks of misalignment
and facilitate adoption by non-technical stakeholders. Expanding the framework’s capabilities to global,
multi-market environments is another key area. Research into algorithms for handling cross-border pricing
strategies and regulatory compliance would increase the system’s relevance across diverse economic contexts.
Emerging technologies, such as IoT for real-time data collection and blockchain for data integrity, should
also be investigated to enhance the system’s accuracy and reliability.
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