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Abstract  

Applying reinforcement learning for topology optimization is a novel approach to engineering 

design. In this work, I produced 6 by 6 and 5 by 5 grid topologies by the PPO algorithm and 4 

4 by the HRL algorithm in adequate compute wall-clock time. I have also addressed increasing 

the calculation speed for artificial intelligence-driven topology optimization by combining 

genetic algorithms and reinforcement learning in a straightforward sequential (one method after 

another). First, I apply genetic algorithms to get an outline of the topology, and then I 'fine-

tune' or refine the obtained topology by reinforcement learning approach. This way, I can obtain 

more optimal topologies and reduce wall-clock time. In particular, I optimized topology for a 

10 by 10 grid, which can be seen as an improvement over a 6 by 6 topology obtained by 

reinforcement learning alone. The genetic algorithm alone could not produce such an optimal 

topology as a combination of reinforcement learning and genetic algorithms in comparable 

wall-clock times. 

 

Keywords: Topology Optimization, Reinforcement Learning, Generalizable, Engineering 

Design, Genetic Algorithms  

 

1. Introduction  

1.1. Motivation 

Rapid development of artificial intelligence facilitates engineering design by creating advanced 

tooling to assist an engineer. The pace of computer technological development dictates a 

modern designer to equip herself with at least basic understanding of current artificial 

intelligence algorithms and methods. From this perspective, this work is an attempt to provide 

some guidelines to artificial intelligence aided engineering design with focus on topology 

optimisation by reinforcement learning.  

Topology optimisation (TO) got traction in recent years and is incorporated in almost all main 

commercial CAD systems nowadays. Optimisation approaches used by these systems are 

mostly based on genetic or gradient optimisation combined with finite element methods. But 
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little attention has been paid to using reinforcement learning (RL) for topology optimisation. 

Only few scientific groups have attempted to apply RL to topology design so far. Recent 

example of applying reinforcement learning to TO can be found in [1, 2]. Main advantages of 

RL include being gradient-free approach and its generalisability. Whereas the disadvantages 

are sample inefficiency of RL and scalability problem for huge finite element meshes. On the 

one hand, RL takes a lot of wall clock time to train, and, on the other hand, finite element 

analysis might take lots of time to converge. This drawback should be overcome with the 

advances in better hardware (like GPUs or targeted AI chips) and better, more sample efficient 

RL algorithms in the future. In fact, reinforcement learning itself can be used in computer chip 

design [3]. 

Likewise, domain conceptual design has a lot of value for creating unique machinery and 

cherishing the future design methods. Some hope that domain design can be solved with large 

language models (LLM) like GPT, [4], which relies on reinforcement learning from human 

feedback (RLHF), [5], or Deepseek which relies on chain of thought (CoT) and mixture of 

experts (MoE), [6]. These LLMs show ability to generate programming code that compiles and 

is logically correct. The same LLMs can be used to generate a ‘language’ or ‘code’ (akin to 

Unified Modelling Language, [7]) that describes the geometry of mechanical structures in 

parametric models, component diagrams, structural diagrams, etc. This ‘code’ would represent 

unique structures and designs. One example of this could be LLM producing the input file for 

finite element model, then one would run FE analysis with this input file via utilizing a FE 

engine (not LLM), and then the produced output were again fed to LLM for postprocessing.   

Additionally, an interesting approach would be using LLMs on graphs to design mechanical 

structures. Evolution of a mechanical structure during generative design could be seen as time 

varying graph (finite element mesh is a graph in essence), hence applying graph neural networks 

(e.g. graph transformers, [8]) to the design process seems to be an interesting direction of 

research. 

Finally, some diffusion probabilistic models [9] that create photorealistic images can be used 

for an engineer’s inspiration. Here, for generating sketches of a design one needs to provide a 

prompt using natural language only. These sketches can later be refined with detailed drawings 

or fed to a multimodal LLM, [10], for further design tailoring. 

1.2. Focus of this article  

Learning how to optimize topology has major importance in structural design for aerospace, 

automotive, offshore, and other industries. Despite outstanding successes in topology 

optimization methods, [11], complexity of design space continues to increase as the industry 

faces new challenges. A viable alternative to conventional topology optimization methods 

might be deep reinforcement learning approach, [12]. Reinforcement learning offers gradient 

free, learning based, generalizable topology optimization paradigm suitable for non-convex 

design spaces. It can be seen as a smart search in solution space. 

Deep reinforcement learning has had great success in artificial intelligence applications. Among 

them, beating the champion of the game of Go in 2016, mastering many Atari games, [13], and 
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optimizing the work of data centers. In this work, I have combined deep reinforcement learning 

(RL), genetic algorithms (GA), and finite element analysis (FEA) for the purpose of topology 

optimization. I have experimented with 10x10, 6x6, 5x5 and 4x4 FE grids, tested 

generalizability, applied simple reward function for the RL agent, applied density field-based 

topology optimization, and used simpler input features’ vector compared to other works. I have 

experimented with PPO, [14], HRL [15], and GA algorithms. Also, my code implementation 

(see Availability of data and materials) is scalable and robust. 

The RL agents were able to find optimal topologies (more optimal than by gradient methods) 

for a wide range of boundary conditions and applied loads [16 - 18]. 

To the best of my knowledge, I am the first to apply PPO, HRL and combination of GA and 

RL to the problem of topology optimization. 

 

2. Reinforcement Learning Background  

2.1.  Markov Decision Process (MDP) framework 

I consider the standard reinforcement learning setting where an agent interacts with an 

environment E over several discrete time steps. At each time step t, the agent receives a state st 

and selects an action at from some set of possible actions A according to its policy π, where π 

is a mapping from states st to actions at. In return, the agent receives the next state st+1 and 

receives a scalar reward rt. The process continues until the agent reaches a terminal state after 

which the process restarts. The return Rt = ∑ γkrt+k 
∞

k=0
 is the total accumulated return from 

time step t with discount factor γ ∈ (0, 1]. The goal of the agent is to maximize the expected 

return from each state st. 

The action value Qπ(s, a) = E[Rt|st = s, a]  is the expected return for selecting action a in state 

s and following policy π. The optimal value function Q∗(s, a) = maxπQπ(s, a)  gives the 

maximum action value for state s and action a achievable by any policy. Similarly, the value of 

state s under policy π is defined as Vπ(s) = E[Rt|st = s] and is simply the expected return for 

following policy π from state s, [19]. 

In topology optimization settings, the finite element model represents an environment to which 

an agent applies actions and from which it gets observations and rewards. An agent uses neural 

network to decide on its actions. Actions change topology and the new topology is then subjected 

to finite element analysis (FEA). Finite element analysis produces the state, which then is fed to 

neural network. And the process repeats itself. The agent gets rewards if it meets an optimization 

objective of minimizing compliance. The end result of the modelling (after inference stage) is 

an optimized topology. The inference stage is a usual greedy inference where an agent makes 

actions of altering the topology based on observations only. 

2.2. Formulating engineering design as full reinforcement learning problem 

I argue that engineering design in general and topology optimization in particular should be 

formulated as full reinforcement learning but not as just a deterministic problem where the next 

state depends on previous state and action alone but not also on random noise.  
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For the purpose of my argument, I will use terms dynamic programming and reinforcement 

learning interchangeably as per [20]. In its simple form, dynamic programming can be 

described as solution to the equation of full reinforcement learning (Figure 1):  

 

Figure 1. Equation of Full Reinforcement Learning (1) 

I will also use words engineering design and topology optimization interchangeably to some 

extent. However, my argument can be understood in a broader sense when applied to all forms 

of engineering design but not only to topology optimization. For instance, I will touch such 

processes as metal stamping and designing computer chips layouts. 

Let’s start from mechanical engineering and metal pressure treatment. In topology optimisation, 

especially 3D printed structures, you can have a large range of fatigue allowable stresses that 

depend on the thermal history experienced by the material in each point. Basically it means that 

your component will experience fatigue based on history and ordering of the structure’s 3D 

printing. To some degree, fatigue initiates at random after certain amount of cycles of exploited 

component. Here we can say that actions of producing the structure in a sequence, whether 

during design or actual manufacturing, affect the outset of fatigue of the component in the future. 

In terms of equation (1), if wk is random outset of fatigue, it should depend on N-2(nd) state and 

N-2 (nd) action. Or more broadly on all previous states and actions in a sequence in a sense that 

N-2(nd) depend on N-3(d) and so on down to state number zero. Hence, equation of full 

reinforcement learning (1) can be applied to both manufacturing and design (as a way for future 

manufacturing steps) of the component. 

Another example is metal stamping where metal stamping mold’s shape would depend on the 

topology of the component being produced. The mold would install different micro defects into 

the component after metal pressure treatment (stamping). These defects will be installed at 

random. Think wk is micro defects. Again, defects would depend on the topology of the 

component, on the shape of the mold. These defects affect metal fracture in the future component 

exploitation, and might even have non-stationary evolution that leads to fatigue. Hence, equation 

(1) can be used and the problem should be formulated as full reinforcement learning. 

Now, let’s say a few words about electrical engineering and chip design. If you design chips you 

need to deal with something called parasitic capacitance (an unavoidable and usually unwanted 

capacitance that exists between the parts of an electronic component or circuit simply because 

of their proximity to each other). This makes transition dynamics (how the voltage and current 
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in different parts of the circuit change over time in response to different inputs) stochastic and 

to some degree random. Once more, we have here wk as parasitic capacitance. The layout of the 

chip you design would affect implicitly the parasitic capacitance you get in the future. Hence, 

again, the chip design can be seen as a full reinforcement learning problem here. 

2.3. Proximal Policy Optimization (PPO) 

PPO is an architecture that improves an agent's training stability by avoiding too large policy 

updates. To do that, it uses a ratio that indicates the difference between the current and old 

policy and clips this ratio from a specific range [1−ϵ,1+ϵ].  

PPO seeks to improve over other solutions by introducing an algorithm that attains the data 

efficiency and reliable performance of Trust Region Policy Optimization [21], while using only 

first-order optimization. PPO authors propose a novel objective with clipped probability ratios, 

which forms a pessimistic estimate (i.e., lower bound) of the performance of the policy. To 

optimize policies, they alternate between sampling data from the policy and performing several 

epochs of optimization on the sampled data, [14]. 

2.4. Hierarchal Reinforcement Learning (HRL) 

Hierarchical agents have the potential to solve sequential decision-making tasks with greater 

sample efficiency than their non-hierarchical counterparts because hierarchical agents can 

break down tasks into sets of subtasks that only require short sequences of decisions. To realize 

this potential of faster learning, hierarchical agents need to be able to learn their multiple levels 

of policies in parallel so these simpler subproblems can be solved simultaneously. Yet, learning 

multiple levels of policies in parallel is hard because it is inherently unstable: changes in a 

policy at one level of the hierarchy may cause changes in the transition and reward functions at 

higher levels in the hierarchy, making it difficult to jointly learn multiple levels of policies. In 

the original paper, the authors introduce a new Hierarchical Reinforcement Learning (HRL) 

framework, Hierarchical Actor-Critic (HAC) that can overcome the instability issues that arise 

when agents try to jointly learn multiple levels of policies. The main idea behind HAC is to 

train each level of the hierarchy independently of the lower levels by training each level as if 

the lower-level policies are already optimal. HAC authors demonstrate experimentally in both 

grid world and simulated robotics domains that their approach can significantly accelerate 

learning relative to other non-hierarchical and hierarchical methods. Indeed, their framework is 

the first to successfully learn 3-level hierarchies in parallel in tasks with continuous state and 

action spaces, [15]. 

2.5. Genetic algorithms 

According to Mitchell (1996) and Whitley (1994), in computer science and operations research, 

a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that 

belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly 

used to generate high-quality solutions to optimisation and search problems by relying on 

biologically inspired operators such as mutation, crossover and selection. In a genetic 

algorithm, a population of candidate solutions (called individuals, creatures, or phenotypes) to 

an optimisation problem is evolved toward better solutions. Each candidate solution has a set 
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of properties (its chromosomes or genotype) which can be mutated and altered; traditionally, 

solutions are represented in binary as strings of 0s and 1s, but other encodings are also possible 

(with e.g., continuous variables). The evolution usually starts from a population of randomly 

generated individuals, and is an iterative process, with the population in each iteration called a 

generation. In each generation, the fitness of every individual in the population is evaluated; 

the fitness is usually the value of the objective function in the optimisation problem being 

solved. The more fit individuals are stochastically selected from the current population, and 

each individual’s genome is modified (recombined and possibly randomly mutated) to form a 

new generation. The new generation of candidate solutions is then used in the next iteration of 

the algorithm. Commonly, the algorithm terminates when either a maximum number of 

generations has been produced, or a satisfactory fitness level has been reached for the 

population.  

A good introductory book for GAs, extensively used in this article, is by [22]. It uses python 

as a primary programming language and DEAP framework for implementing genetic 

algorithms. DEAP is a novel evolutionary computation framework for rapid prototyping and 

testing of ideas. It seeks to make algorithms explicit and data structures transparent. It works 

in perfect harmony with parallelisation mechanism such as multiprocessing and SCOOP 1. 

 

3. Experiments  

Using codebase from [23], I have tried to rework its topology optimization approach by replacing 

its conventional gradient based optimization method with reinforcement learning and genetic 

algorithms. 

Topology optimization aims to distribute material in a design space such that it supports some 

fixed points or “normals” and withstands a set of applied forces or loads with the best efficiency. 

To illustrate how we can formulate this, I concentrate on one of design problems from [1], 

describing elementally discretized design domain as per (Figure 2). 

 

 

                                                        
1 https://deap.readthedocs.io/en/master/ 
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Figure 2. 2D Representation of an Elementally Discretized Starting Topology of an 8 × 8 

Cantilever Beam 

The large gray rectangle here represents the design space. The load force, denoted by the 

downwards-pointing arrow, is being applied at the bottom right corner. There are fixed points 

here as well, which are at the top and bottom left corners of the design space corresponding to a 

normal force from some external rigid joint (Figure 2). 

Finite elements. Elastic materials have continuous physics, but a computer can only deal with 

discrete approximations. This means that we have to divide the design space into a discrete 

number of regions or finite elements that can mimic the behaviour of an elastic solid as closely 

as possible. We can connect their boundaries with a set of nodes and let these nodes interact with 

each other as if they were joined by springs. This way, when a force is applied to one node, it 

passes on a part of that force to all the other nodes in the structure, causing each to move a little 

and, in doing so, deform the finite elements. As this happens, the whole structure deforms as if 

it were an elastic solid. 

There are many ways to choose the arrangement of these finite elements. The simplest one is to 

make them square and organize them on a rectangular grid. 

In the diagram above, there are 64 elements with four nodes per element and two degrees of 

freedom (DOFs) per node. The first is horizontal and the second is vertical. The numbering 

scheme proceeds column wise from left to right so that the horizontal and vertical displacements 

of node n are given by DOFs 2n − 1 and 2n respectively. This grid structure is useful because it 

can be exploited “…in order to reduce the computational effort in the optimization loop…” It 

also simplifies the code [23]. 

The density method. After parameterizing the design space, we need to parameterize the filling 

material. At a high level, each finite element will have a certain amount of material given by 

some number 0 or 1. We will use this amount to determine the element stiffness coefficient Ee, 

also known as Young’s modulus. In the nodes-connected-by-springs analogy, this coefficient 

would control all the spring stiffnesses. 

Reinforcement learning. I have applied PPO implementation from stable baselines 3 library 

and reworked HRL implementation from [24]. For both PPO and HRL, I have created custom 

OpenAI Gym environments. 

The action space consisted of N^2 actions of ‘filling void space (actually with the density of 1e-

4) with an element (density of 1)’, where N by N is dimension of the grid.  

I have experimented with 6 by 6 and 5 by 5 grids for PPO, and 4 by 4 grid for HRL.  For PPO 

setting, I have tested generalizability of the model by randomizing the places of force application 

across different episodes and being different in training and inference. The environment for this 

setting was the topology on the grid.  

I experimented with squared rooted and squared reciprocals of compliances as reward functions. 

I trained my model for 1M steps (for about 80min of wall-clock time) on 2,9 GHz Dual-Core 

Intel Core i5 computer, for PPO. And for 5000 steps on Apple M1 Pro, for HRL. 
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For HRL setting, hyperparameters (including network architecture) were obtained by optuna. 

For PPO settings, the exact architecture is as per stable baselines 3 implementation. Interested 

reader is referred to (Availability of data and materials) section for more details on the neural 

network’s architecture.   

The results of applying PPO and HRL to topology optimization of Cantilever beam is presented 

in Figure 3 below. 

 

(a) 

 

(b) 

 

(c)  

Figure 3:  (a) Design by PPO and finite 

elements methods (with randomization). The 

load was not applied at the bottom right corner 

element during the training, but the RL agent 

placed there a non-zero element at inference, 

hence showing its generalizability; (b) Design 

by PPO and finite elements methods (without 

randomization); (c) Design by HRL and finite 

elements methods (without randomization, 

cherry-picked) 

I have experimented with a 2-level hierarchical agent in 4 by 4 grid and did not test 

generalizability for HRL setting. My intention with HRL was to speed up the learning. 

RL was able to reliably find near optimal topologies for a range of different boundary conditions 

and applied forces. In terms of performance my implementation of HRL is much slower than 

PPO if we account for HPO (hyper parameter optimization), but seems to be faster if we do not 
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account for HPO. Another limitation of HRL is that you need to manually set the target state, 

which is a kind of drawback because you do not know the target state in advance and can only 

set it by experimentation. 

Number of calculation steps is much less than the number of possible combinations (states) on 

the grid, hence the neural network is not merely learning by heart the most optimal solution 

(Figure 4).  

 

Figure 4: Episode Reward for PPO Setting 

In other set of experiments, I have combined genetic algorithms and reinforcement learning in 

a straightforward sequential (one method after another) way. First, I apply genetic algorithms 

to get an outline of the topology and then I ‘fine-tune’ or refine obtained topology by 

reinforcement learning approach. In this way, I can obtain both more optimal topologies and 

reduce wall-clock time. I was able to optimize topology for 10 by 10 grid, which can be seen 

as an improvement over 6 by 6 topology obtained by reinforcement learning alone. It should be 

mentioned that genetic algorithm alone was not able to produce such an optimal topology as by 

combination of reinforcement learning and genetic algorithms in adequate wall clock times. 

I combined genetic algorithm (GA) and reinforcement learning to optimize a 10 by 10 grid in 

the following manner: 

1. I have run fast GA (for about 1 min wall-clock time), where actions were placing an 

element in the void on the grid (void is 0 and an element is 1). 

2. I have set an action space for the RL problem as removal of boundary elements 

obtained in (1) only (Figure 5). All other actions (grid elements) were not considered 

in RL problem. Hence, I considerably reduced combinatorial space for the RL task. 

3. I ran RL PPO algorithm for about 32 min wall clock time. 

4. Experiments showed that GA pre-training + RL refinement was better than GA alone 

(in terms of a compliance metric) for the same wall clock run times. And, obviously, 

GA+RL was better than RL alone. 

I trained my model on Apple M1 Pro. I have used DEAP framework for the GA part. And, I 

have used stable_baselines3 and OpenAI gym for PPO algorithm’s implementation for the RL 

part. 
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Figure 5. Topology with Boundary Layer (Action Layer) in Black, Internal Material 

in Yellow and Empty Space in Red 

I applied downward load at the bottom right corner and fixed an element on the left side alike 

cantilever beam (Figure 2). Objective function was a compliance in topology optimisation sense 

i.e. an inverse strength of a material. RL improved compliance metric of GA from 19.3654 to 

18.2786 (the lower the better). Near optimal topologies are depicted in Figure 6 below. 

(a) 

 

(b) 

 

 

 

Figure 6:  (a) Design by GA pretraining (b) Design after RL refinement 

Learning progress for RL refinement can be seen in Figure 7. 

 

Figure 7: Episode Reward for PPO Refinement 
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4. Discussion  

One of the main problems when applying reinforcement learning to topology optimisation is 

scaling up from smaller geometries to larger design spaces. In this work, I have tried to apply 

HRL, PPO and GA to solve the scale up problem. My intention was to speed up the learning 

hence potentially to be able to solve larger topologies, especially with non-convex objectives. 

As stated earlier, HRL is a technique that utilizes hierarchies for a better sample efficiency of 

RL algorithms. Hierarchies can be spatial, temporal or between the abstraction levels. In the 

case of finite element analysis, hierarchy can be different scales (micro, macro) or it can be 

different comprehensive levels of mathematical model (e.g. analytical solution — plane stress 

— 3D model). 

At first, my reasoning for HRL was that an agent at higher level would choose one of the sub 

sections within the design space grid first, and a low-level agent then would choose one of the 

cells within the sub-section chosen at higher level. But that would make decisions sequential and 

interdependent between the hierarchical levels. From the literature analysis, it turned out that 

most promising HRL algorithms are those who make decision within a hierarchical level relative 

to other level not sequentially but in ‘parallel’, since it greatly speeds up the learning. Making 

my initial ‘sequential’ views on HRL applications to structural design a bit off. Nevertheless, 

the initial idea of different hierarchical levels doing different things, for example, on a higher 

level an agent moving to the location on the grid, and on the lower level, the agent changing the 

topology around that location, should be investigated further, because it can allow reducing 

number of computations required and speeding up the learning as an RL agent would need to 

learn doing ‘local actions’ only. Some experimentation related to this can be found in the 

codebase for this article (see Availability of Data and Materials). 

There were a few tricks that I used to solve the HRL environment: 

 hyperparameter optimisation (HPO; done with optuna) 

 tweaking neural network architecture (especially adding dropout layer) 

 reward engineering 

 making neural network aware of the design space geometry (Figure 8) 

 

Figure 8. Code Snippet for HRL ‘Trick’ 

Penalty coefficient is used to give the agent an ability to do the same actions (Figure 8). 

The continuous environment in this HRL model is a vector of [mean density, compliance], and 

the action is putting a material into the cell of the grid. The number of actions equals the number 

of cells in the grid. Time horizon to achieve a subgoal should be less than maximum number of 

steps in the episode to benefit from abstraction that HRL provides. It should be noted that the 

environment vector is not uniquely maps to a topology. 
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I am not feeding the topology to the neural network explicitly during the learning, hence I applied 

the above trick of making neural network ‘aware’ of the design space geometry (Figure 8). It is 

kind of applying penalty to already taken actions. This restriction on the action distribution might 

actually not be the optimal way to do it, but, even if it is a faulty reasoning, a neural network 

should adjust its decisions and make right actions, resulting in an optimal policy that accounts 

for the ‘bug’. 

Also, it should be noted that relying only on hyperparameters tuning might have overfitted the 

domain. 

Apart from applying the penalty, at first, I wanted to make the neural network to build an 

understanding of an environment by remembering actions taken (because I did not explicitly 

input the grid into the neural network, and the neural network did not know any changes 

happening to the topology). I experimented with adding LSTM in the first layer of actor network 

as a form of memory, but it reduced the speed of learning by a large margin, and potentially 

required accumulating some number of actions hence mixing up the initial HRL algorithm. So, 

I abandoned this idea and used the above trick of ‘masking’ (applying the penalty) action 

distribution instead. But I might return to the LSTM idea later since some papers indicate that 

entering even one frame of the grid might be sufficient for ‘remembering’ [25]. 

Both PPO and HRL produced near optimal topologies. Some benchmarks can be found in the 

Appendix. 

By number of states, I mean number of combinations of cells in a grid. 

The promise that RL can speed up topology optimization is high. If fully solved, it can allow to 

go from 2D to 3D topologies with RL especially for larger design spaces and non-convex 

objectives. Other ways to scale/speed up to larger topologies might be progressive refinement 

method [1], where one gradually increases the complexity of design space without requiring 

additional computation, and asynchronous deep reinforcement learning [19] that uses 

asynchronous gradient descent for optimization of deep neural network controllers and enables 

half the training time on a single multi-core CPU instead of a GPU. In the future, speeding up 

the calculation might be accomplished: by making neural networks ‘smaller’ via using sparsity, 

quantization, or distillation techniques; by applying physics informed neural networks 2 in place 

of finite element methods; by using evolutionary strategies [26] that can run in parallel; or, on 

the hardware side, by using analog chips 3.  

I believe, the idea of hierarchical reinforcement learning can also lead to the systems of the full 

design cycle, where at the lowest level, and the RL agent designs material. One abstraction 

level above, the RL agent designs a component (assembly of materials), one level above that, 

the RL agent produces a product (assembly of components). All it is done concurrently. At each 

level, the RL agent makes higher and higher level design decisions. At the end, an engineer gets 

her final design that was generated in a hierarchical fashion. As for the effectiveness of current 

                                                        
2 https://arxiv.org/abs/1711.10561  
3 https://www.youtube.com/watch?v=GVsUOuSjvcg 

http://www.jngr5.com/
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implementation of hierarchical RL, it was estimated that for each iteration there were ~11 

actions that the agent was making. For 4500 iterations (min number of iteration at which we 

can get optimal solution), it is 11*4500 = 49500 actions. On the other hand, for 4 by 4 grid we 

have 2^16=65536 possible states (combination of cells). Hence, accounting for the fact that 

from that 11 actions that the agent was making some were repetitive, HRL is much more 

effective than a brute force approach ( not in terms of wall clock time for 4x4 grid, but in terms 

of number of operations). 

Although traditional TO will almost always be faster than RL in wall clock time meaning, 

reinforcement learning can account for a unique constraint where minimising gradients is tough 

or impossible to do (for non-convex objectives). Reinforcement learning accounts for these 

objectives and constraints through the reward function. Besides, generalisability of RL and 

transfer learning can make RL to be more compute efficient than classical TO in total once you 

train the RL model. Because, one does not need to rerun calculations for each new constraint, 

but just run RL inference instead. Additionally, every time you run inference after RL training, 

it gives you a slightly different topology. Hence, RL can be leveraged at inference time as it 

produces not a single design but several different designs from which you can choose the best. 

It happens since at each inference time a neural network fires slightly different weights thus 

producing a slightly different design. 

Other experiments show that GA pre-training + RL refinement is better than GA alone (in terms 

of a compliance metric) for the same wall clock run times. And, GA+RL is better than RL alone.  

Modelling of this kind gives hope to apply my algorithms for a larger design spaces producing 

optimal topologies within an adequate wall-clock time.  

Now, let’s try to estimate practicality of the proposed approach if a supercomputer is available. 

First, let’s try to estimate a supercomputer’s compute capacity. In the article 4, on the macro 

placements of Ariane picture, there are ~ (32 by 34) grid with ~6 different colouring. That means 

that there are 6^1088 states that can be handled by Google supercomputer in an adequate wall 

clock time. On the other hand, we have a binary grid in topology optimization. Hence to 

understand how many nodes we can process, we need to solve the following equation: 

6^1088=2^x, from which it follows that x~2812 elements. However, it should be noted that  the 

google paper [3] used only reinforcement learning and did not apply finite element methods in 

their algorithm. I instead used combination of RL and genetic algorithm (that can handle more 

elements in less time) and applied finite element methods. Let’s assume that these two factors 

compensate each other (in terms of calculation time) and we are still at 2812 elements that can 

be handled by a supercomputer. From the literature it was reported that gradient topology 

optimization can handle up to 30000 elements max, but nevertheless gradient topology 

optimization would not provide such optimal results as a combination of RL and GA presented 

in this paper.     

                                                        
4 https://research.google/blog/chip-design-with-deep-reinforcement-learning/ 

http://www.jngr5.com/
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Potential practical application of topology optimization with RL for small grids can be 

microscopic topology optimization, [27], and metamaterials design, [28]. 

Finally, an open research question in topology optimisation is how to make the produced 

designs suitable for a wide range of manufacturing methods but not only for additive 

manufacturing and 3D printing. I propose to approach this issue by guiding topology 

optimisation with reinforcement learning by techniques from AI safety research. For example, 

by learning a reward function from human feedback (favouring the designs that are 

manufacturable) and then to optimize that reward function, [5].   
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Appendix – Benchmarking for 5 by 5 grid 

 

Measured by compliance as per codebase [23]; and by codebase [11]. 

Loading schedule:  

       

a). Topology obtained by Python version (topopt_cholmod.py; python3 

topopt_cholmod.py 5 5 0.05 1 2 1) of [11]: compliance (as per [23]) is 89.63; wall clock 

time ~ 1 sec.  

 

b). Topology obtained by the reinforcement learning (PPO): compliance (as per [23]) is 

33.6; wall clock time ~ 18 min 
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c). Brute force approach: compliance (as per [23]) is 29.6; wall clock time ~ 5.8 hr. 
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